• Research article
  • Open access
  • Published: 06 January 2021

Effects of the COVID-19 pandemic on medical students: a multicenter quantitative study

  • Aaron J. Harries   ORCID: orcid.org/0000-0001-7107-0995 1 ,
  • Carmen Lee 1 ,
  • Lee Jones 2 ,
  • Robert M. Rodriguez 1 ,
  • John A. Davis 2 ,
  • Megan Boysen-Osborn 3 ,
  • Kathleen J. Kashima 4 ,
  • N. Kevin Krane 5 ,
  • Guenevere Rae 6 ,
  • Nicholas Kman 7 ,
  • Jodi M. Langsfeld 8 &
  • Marianne Juarez 1  

BMC Medical Education volume  21 , Article number:  14 ( 2021 ) Cite this article

128k Accesses

145 Citations

37 Altmetric

Metrics details

The COVID-19 pandemic disrupted the United States (US) medical education system with the necessary, yet unprecedented Association of American Medical Colleges (AAMC) national recommendation to pause all student clinical rotations with in-person patient care. This study is a quantitative analysis investigating the educational and psychological effects of the pandemic on US medical students and their reactions to the AAMC recommendation in order to inform medical education policy.

The authors sent a cross-sectional survey via email to medical students in their clinical training years at six medical schools during the initial peak phase of the COVID-19 pandemic. Survey questions aimed to evaluate students’ perceptions of COVID-19’s impact on medical education; ethical obligations during a pandemic; infection risk; anxiety and burnout; willingness and needed preparations to return to clinical rotations.

Seven hundred forty-one (29.5%) students responded. Nearly all students (93.7%) were not involved in clinical rotations with in-person patient contact at the time the study was conducted. Reactions to being removed were mixed, with 75.8% feeling this was appropriate, 34.7% guilty, 33.5% disappointed, and 27.0% relieved.

Most students (74.7%) agreed the pandemic had significantly disrupted their medical education, and believed they should continue with normal clinical rotations during this pandemic (61.3%). When asked if they would accept the risk of infection with COVID-19 if they returned to the clinical setting, 83.4% agreed.

Students reported the pandemic had moderate effects on their stress and anxiety levels with 84.1% of respondents feeling at least somewhat anxious. Adequate personal protective equipment (PPE) (53.5%) was the most important factor to feel safe returning to clinical rotations, followed by adequate testing for infection (19.3%) and antibody testing (16.2%).

Conclusions

The COVID-19 pandemic disrupted the education of US medical students in their clinical training years. The majority of students wanted to return to clinical rotations and were willing to accept the risk of COVID-19 infection. Students were most concerned with having enough PPE if allowed to return to clinical activities.

Peer Review reports

The COVID-19 pandemic has tested the limits of healthcare systems and challenged conventional practices in medical education. The rapid evolution of the pandemic dictated that critical decisions regarding the training of medical students in the United States (US) be made expeditiously, without significant input or guidance from the students themselves. On March 17, 2020, for the first time in modern US history, the Association of American Medical Colleges (AAMC), the largest national governing body of US medical schools, released guidance recommending that medical students immediately pause all clinical rotations to allow time to obtain additional information about the risks of COVID-19 and prepare for safe participation in the future. This decisive action would also conserve scarce resources such as personal protective equipment (PPE) and testing kits; minimize exposure of healthcare workers (HCWs) and the general population; and protect students’ education and wellbeing [ 1 ].

A similar precedent was set outside of the US during the SARS-CoV1 epidemic in 2003, where an initial cluster of infection in medical students in Hong Kong resulted in students being removed from hospital systems where SARS surfaced, including Hong Kong, Singapore and Toronto [ 2 , 3 ]. Later, studies demonstrated that the exclusion of Canadian students from those clinical environments resulted in frustration at lost learning opportunities and students’ inability to help [ 3 ]. International evidence also suggests that medical students perceive an ethical obligation to participate in pandemic response, and are willing to participate in scenarios similar to the current COVID-19 crisis, even when they believe the risk of infection to themselves to be high [ 4 , 5 , 6 ].

The sudden removal of some US medical students from educational settings has occurred previously in the wake of local disasters, with significant academic and personal impacts. In 2005, it was estimated that one-third of medical students experienced some degree of depression or post-traumatic stress disorder (PTSD) after Hurricane Katrina resulted in the closure of Tulane University School of Medicine [ 7 ].

Prior to the current COVID-19 pandemic, we found no studies investigating the effects of pandemics on the US medical education system or its students. The limited pool of evidence on medical student perceptions comes from two earlier global coronavirus surges, SARS and MERS, and studies of student anxiety related to pandemics are also limited to non-US populations [ 3 , 8 , 9 ]. Given the unprecedented nature of the current COVID-19 pandemic, there is concern that students may be missing out on meaningful educational experiences and months of clinical training with unknown effects on their current well-being or professional trajectory [ 10 ].

Our study, conducted during the initial peak phase of the COVID-19 pandemic, reports students’ perceptions of COVID-19’s impact on: medical student education; ethical obligations during a pandemic; perceptions of infection risk; anxiety and burnout; willingness to return to clinical rotations; and needed preparations to return safely. This data may help inform policies regarding the roles of medical students in clinical training during the current pandemic and prepare for the possibility of future pandemics.

We conducted a cross-sectional survey during the initial peak phase of the COVID-19 pandemic in the United States, from 4/20/20 to 5/25/20, via email sent to all clinically rotating medical students at six US medical schools: University of California San Francisco School of Medicine (San Francisco, CA), University of California Irvine School of Medicine (Irvine, CA), Tulane University School of Medicine (New Orleans, LA), University of Illinois College of Medicine (Chicago, Peoria, Rockford, and Urbana, IL), Ohio State University College of Medicine (Columbus, OH), and Zucker School of Medicine at Hofstra/Northwell (Hempstead, NY). Traditional undergraduate medical education in the US comprises 4 years of medical school with 2 years of primarily pre-clinical classroom learning followed by 2 years of clinical training involving direct patient care. Study participants were defined as medical students involved in their clinical training years at whom the AAMC guidance statement was directed. Depending on the curricular schedule of each medical school, this included intended graduation class years of 2020 (graduating 4th year student), 2021 (rising 4th year student), and 2022 (rising 3rd year student), exclusive of planned time off. Participating schools were specifically chosen to represent a broad spectrum of students from different regions of the country (West, South, Midwest, East) with variable COVID-19 prevalence. We excluded medical students not yet involved in clinical rotations. This study was deemed exempt by the respective Institutional Review Boards.

We developed a survey instrument modeled after a survey used in a previously published peer reviewed study evaluating the effects of the COVID-19 pandemic on Emergency Physicians, which incorporated items from validated stress scales [ 11 ]. The survey was modified for use in medical students to assess perceptions of the following domains: perceived impact on medical student education; ethical beliefs surrounding obligations to participate clinically during the pandemic; perceptions of personal infection risk; anxiety and burnout related to the pandemic; willingness to return to clinical rotations; and preparation needed for students to feel safe in the clinical environment. Once created, the survey underwent an iterative process of input and review from our team of authors with experience in survey methodology and psychometric measures to allow for optimization of content and validity. We tested a pilot of our preliminary instrument on five medical students to ensure question clarity, and confirm completion of the survey in approximately 10 min. The final survey consisted of 29 Likert, yes/no, multiple choice, and free response questions. Both medical school deans and student class representatives distributed the survey via email, with three follow-up emails to increase response rates. Data was collected anonymously.

For example, to assess the impact on students’ anxiety, participants were asked, “How much has the COVID-19 pandemic affected your stress or anxiety levels?” using a unipolar 7-point scale (1 = not at all, 4 = somewhat, 7 = extremely). To assess willingness to return to clinical rotations, participants were asked to rate on a bipolar scale (1 = strongly disagree, 2 = disagree, 3 = somewhat disagree, 4 = neither disagree nor agree, 5 = somewhat agree, 6 = agree, and 7 = strongly agree) their agreement with the statement: “to the extent possible, medical students should continue with normal clinical rotations during this pandemic.” (Survey Instrument, Supplemental Table  1 ).

Survey data was managed using Qualtrics hosted by the University of California, San Francisco. For data analysis we used STATA v15.1 (Stata Corp, College Station, TX). We summarized respondent characteristics and key responses as raw counts, frequency percent, medians and interquartile ranges (IQR). For responses to bipolar questions, we combined positive responses (somewhat agree, agree, or strongly agree) into an agreement percentage. To compare differences in medians we used a signed rank test with p value < 0.05 to show statistical difference. In a secondary analysis we stratified data to compare questions within key domains amongst the following sub-groups: female versus male, graduation year, local community COVID-19 prevalence (high, medium, low), and students on clinical rotations with in-person patient care. This secondary analysis used a chi square test with p value < 0.05 to show statistical difference between sub-group agreement percentages.

Of 2511 students contacted, we received 741 responses (29.5% response rate). Of these, 63.9% of respondents were female and 35.1% were male, with 1.0% reporting a different gender identity; 27.7% of responses came from the class of 2020, 53.5% from the class of 2021, and 18.7% from the class of 2022. (Demographics, Table 1 ).

Most student respondents (74.9%) had a clinical rotation that was cut short or canceled due to COVID-19 and 93.7% reported not being involved in clinical rotations with in-person patient contact at the time of the study. Regarding students’ perceptions of cancelled rotations (allowing for multiple reactions), 75.8% felt this was appropriate, 34.7% felt guilty for not being able to help patients and colleagues, 33.5% felt disappointed, and 27.0% felt relieved.

Most students (74.7%) agreed that their medical education had been significantly disrupted by the pandemic. Students also felt they were able to find meaningful learning experiences during the pandemic (72.1%). Free response examples included: taking a novel COVID-19 pandemic elective course, telehealth patient care, clinical rotations transitioned to virtual online courses, research or education electives, clinical and non-clinical COVID-19-related volunteering, and self-guided independent study electives. Students felt their medical schools were doing everything they could to help students adjust (72.7%). Overall, respondents felt the pandemic had interfered with their ability to develop skills needed to prepare for residency (61.4%), though fewer (45.7%) felt it had interfered with their ability to apply to residency. (Educational Impact, Fig.  1 ).

figure 1

Perceived educational impacts of the COVID-19 pandemic on medical students

A majority of medical students agreed they should be allowed to continue with normal clinical rotations during this pandemic (61.3%). Most students agreed (83.4%) that they accepted the risk of being infected with COVID-19, if they returned. When asked if students should be allowed to volunteer in clinical settings even if there is not a healthcare worker (HCW) shortage, 63.5% agreed; however, in the case of a HCW shortage only 19.5% believed students should be required to volunteer clinically. (Willingness to Participate Clinically, Fig.  2 ).

figure 2

Willingness to participate clinically during the COVID-19 pandemic

When asked if they perceived a moral, ethical, or professional obligation for medical students to help, 37.8% agreed that medical students have such an obligation during the current pandemic. This is in contrast to their perceptions of physicians: 87.1% of students agreed with a physician obligation to help during the COVID-19 pandemic. For both groups, students were asked if this obligation persisted without adequate PPE: only 10.9% of students believed medical students had this obligation, while 34.0% agreed physicians had this obligation. (Ethical Obligation, Fig.  3 ).

figure 3

Ethical obligation to volunteer during the COVID-19 pandemic

Given the assumption that there will not be a COVID-19 vaccine until 2021, students felt the single most important factor in a safe return to clinical rotations was having access to adequate PPE (53.3%), followed by adequate testing for infection (19.3%) and antibody testing for possible immunity (16.2%). Few students (5%) stated that nothing would make them feel comfortable until a vaccine is available. On a 1–7 scale (1 = not at all, 4 = somewhat, 7 = extremely), students felt somewhat prepared to use PPE during this pandemic in the clinical setting, median = 4 (IQR 4,6), and somewhat confident identifying symptoms most concerning for COVID-19, median = 4 (IQR 4,5). Students preferred to learn about PPE via video demonstration (76.7%), online modules (47.7%), and in-person or Zoom style conferences (44.7%).

Students believed they were likely to contract COVID-19 in general (75.6%), independent of a return to the clinical environment. Most respondents believed that missing some school or work would be a likely outcome (90.5%), and only a minority of students believed that hospitalization (22.1%) or death (4.3%) was slightly, moderately, or extremely likely.

On a 1–7 scale (1 = not at all, 4 = somewhat, and 7 = extremely), the median (IQR) reported effect of the COVID-19 pandemic on students’ stress or anxiety level was 5 (4, 6) with 84.1% of respondents feeling at least somewhat anxious due to the pandemic. Students’ perceived emotional exhaustion and burnout before the pandemic was a median = 2 (IQR 2,4) and since the pandemic started a median = 4 (IQR 2,5) with a median difference Δ = 2, p value < 0.001.

Secondary analysis of key questions revealed statistical differences between sub-groups. Women were significantly more likely than men to agree that the pandemic had affected their anxiety. Several significant differences existed for the class of 2020 when compared to the classes of 2021 and 2022: they were less likely to report disruptions to their education, to prefer to return to rotations, and to report an effect on anxiety. There were no significant differences with students who were still involved with in-person patient care compared with those who were not. In comparing areas with high COVID-19 prevalence at the time of the survey (New York and Louisiana) with medium (Illinois and Ohio) and low prevalence (California), students were less likely to report that the pandemic had disrupted their education. Students in low prevalence areas were most likely to agree that medical students should return to rotations. There were no differences between prevalence groups in accepting the risk of infection to return, or subjective anxiety effects. (Stratification, Table  2 ).

The COVID-19 pandemic has fundamentally transformed education at all levels - from preschool to postgraduate. Although changes to K-12 and college education have been well documented [ 12 , 13 ], there have been very few studies to date investigating the effects of COVID-19 on undergraduate medical education [ 14 ]. To maintain the delicate balance between student safety and wellbeing, and the time-sensitive need to train future physicians, student input must guide decisions regarding their roles in the clinical arena. Student concerns related to the pandemic, paired with their desire to return to rotations despite the risks, suggest that medical students may take on emotional burdens as members of the patient care team even when not present in the clinical environment. This study offers insight into how best to support medical students as they return to clinical rotations, how to prepare them for successful careers ahead, and how to plan for their potential roles in future pandemics.

Previous international studies of medical student attitudes towards hypothetical influenza-like pandemics demonstrated a willingness (80%) [ 4 ] and a perceived ethical obligation to volunteer (77 and 70%), despite 40% of Canadian students in one study perceiving a high likelihood of becoming infected [ 5 , 6 ]. Amidst the current COVID-19 pandemic, our participants reported less agreement with a medical student ethical obligation to volunteer in the clinical setting at 37.8%, but believed in a higher likelihood of becoming infected at 75.6%. Their willingness to be allowed to volunteer freely (63.5%) may suggest that the stresses of an ongoing pandemic alter students’ perceptions of the ethical requirement more than their willingness to help. Students overwhelmingly agreed that physicians had an ethical obligation to provide care during the COVID-19 pandemic (87.1%), possibly reflecting how they view the ethical transition from student to physician, or differences between paid professionals and paying for an education.

At the time our study was conducted, there were widespread concerns for possible HCW shortages. It was unclear whether medical students would be called to volunteer when residents became ill, or even graduate early to start residency training immediately (as occurred at half of schools surveyed). This timing allowed us to capture a truly unique perspective amongst medical students, a majority of whom reported increased anxiety and burnout due to the pandemic. At the same time, students felt that their medical schools were doing everything possible to support them, perhaps driven by virtual town halls and daily communication updates.

Trends in secondary analysis show important differences in the impacts of the pandemic. Women were more likely to report increased anxiety as compared to men, which may reflect broader gender differences in medical student anxiety [ 15 ] but requires more study to rule out different pandemic stresses by gender. Graduating medical students (class of 2020) overall described less impact on medical education and anxiety, a decreased desire to return to rotations, but equal acceptance of the risk of infection in clinical settings, possibly reflecting a focus on their upcoming intern year rather than the remaining months of undergraduate medical education. Since this class’s responses decreased overall agreement on these questions, educational impacts and anxiety effects may have been even greater had they been assessed further from graduation. Interestingly, students from areas with high local COVID-19 prevalence (New York and Louisiana) reported a less significant effect of the pandemic on their education, a paradoxical result that may indicate that medical student tolerance for the disruptions was greater in high-prevalence areas, as these students were removed at the same, if not higher, rates as their peers. Our results suggest that in future waves of the current pandemic or other disasters, students may be more patient with educational impacts when they have more immediate awareness of strains on the healthcare system.

A limitation of our study was the survey response rate, which was anticipated given the challenges students were facing. Some may not have been living near campus; others may have stopped reading emails due to early graduation or limited access to email; and some would likely be dealing with additional personal challenges related to the pandemic. We attempted to increase response rates by having the study sent directly from medical school deans and leadership, as well as respective class representatives, and by sending reminders for completion. The survey was not incentivized, and a higher response rate in the class of 2021 across all schools may indicate that students who felt their education was most affected were most likely to respond. We addressed this potential source of bias in the secondary analysis, which showed no differences between 2021 and 2022 respondents. Another limitation was the inherent issue with survey data collection of missing responses for some questions that occurred in a small number of surveys. This resulted in slight variability in the total responses received for certain questions, which were not statistically significant. To be transparent about this limitation, we presented our data by stating each total response and denominator in the Tables.

This initial study lays the groundwork for future investigations and next steps. With 72.1% of students agreeing that they were able to find meaningful learning in spite of the pandemic, future research should investigate novel learning modalities that were successful during this time. Educators should consider additional training on PPE use, given only moderate levels of student comfort in this area, which may be best received via video. It is also important to study the long-term effects of missing several months of essential clinical training and identifying competencies that may not have been achieved, since students perceived a significant disruption to their ability to prepare skills for residency. Next steps could be to study curriculum interventions, such as capstone boot camps and targeted didactic skills training, to help students feel more comfortable as they transition into residency. Educators must also acknowledge that some students may not feel comfortable returning to the clinical environment until a vaccine becomes available (5%) and ensure they are equally supported. Lastly, it is vital to further investigate the mental health effects of the pandemic on medical students, identifying subgroups with additional stressors, needs related to anxiety or possible PTSD, and ways to minimize these negative effects.

In this cross-sectional survey, conducted during the initial peak phase of the COVID-19 pandemic, we capture a snapshot of the effects of the pandemic on US medical students and gain insight into their reactions to the unprecedented AAMC national recommendation for removal from clinical rotations. Student respondents from across the US similarly recognized a significant disruption to their medical education, shared a desire to continue with in-person rotations, and were willing to accept the risk of infection with COVID-19. Our novel results provide a solid foundation to help shape medical student roles in the clinical environment during this pandemic and future outbreaks.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Association of American Medical Colleges. Interim Guidance on Medical Students’ Participation in Direct Patient Contact Activities: Principles and Guidelines. https://www.aamc.org/news-insights/press-releases/important-guidance-medical-students-clinical-rotations-during-coronavirus-covid-19-outbreak . Published March 17, 2020. Accessed April 1, 2020.

Clark J. Fear of SARS thwarts medical education in Toronto. BMJ. 2003;326(7393):784. https://doi.org/10.1136/bmj.326.7393.784/c .

Article   Google Scholar  

Loh LC, Ali AM, Ang TH, Chelliah A. Impact of a spreading epidemic on medical students. Malays J Med Sci. 2006;13(2):30–6.

Google Scholar  

Mortelmans LJ, Bouman SJ, Gaakeer MI, Dieltiens G, Anseeuw K, Sabbe MB. Dutch senior medical students and disaster medicine: a national survey. Int J Emerg Med. 2015;8(1):77. https://doi.org/10.1186/s12245-015-0077-0 .

Huapaya JA, Maquera-Afaray J, García PJ, Cárcamo C, Cieza JA. Conocimientos, prácticas y actitudes hacia el voluntariado ante una influenza pandémica: estudio transversal con estudiantes de medicina en Perú [Knowledge, practices and attitudes toward volunteer work in an influenza pandemic: cross-sectional study with Peruvian medical students]. Medwave. 2015;15(4):e6136Published 2015 May 8. https://doi.org/10.5867/medwave.2015.04.6136 .

Herman B, Rosychuk RJ, Bailey T, Lake R, Yonge O, Marrie TJ. Medical students and pandemic influenza. Emerg Infect Dis. 2007;13(11):1781–3. https://doi.org/10.3201/eid1311.070279 .

Kahn MJ, Markert RJ, Johnson JE, Owens D, Krane NK. Psychiatric issues and answers following hurricane Katrina. Acad Psychiatry. 2007;31(3):200–4. https://doi.org/10.1176/appi.ap.31.3.200 .

Al-Rabiaah A, Temsah MH, Al-Eyadhy AA, et al. Middle East respiratory syndrome-Corona virus (MERS-CoV) associated stress among medical students at a university teaching hospital in Saudi Arabia. J Infect Public Health. 2020;13(5):687–91. https://doi.org/10.1016/j.jiph.2020.01.005 .

Wong JG, Cheung EP, Cheung V, et al. Psychological responses to the SARS outbreak in healthcare students in Hong Kong. Med Teach. 2004;26(7):657–9. https://doi.org/10.1080/01421590400006572 .

Stokes DC. Senior medical students in the COVID-19 response: an opportunity to be proactive. Acad Emerg Med. 2020;27(4):343–5. https://doi.org/10.1111/acem.13972 .

Rodriguez RM, Medak AJ, Baumann BM, et al. Academic emergency medicine physicians’ anxiety levels, stressors, and potential mitigation measures during the acceleration phase of the COVID-19 pandemic. Acad Emerg Med. 2020;27(8):700–7. https://doi.org/10.1111/acem.14065 .

Sahu P. Closure of universities due to coronavirus disease 2019 (COVID-19): impact on education and mental health of students and academic staff. Cureus. 2020;12(4):e7541Published 2020 Apr 4. https://doi.org/10.7759/cureus.7541 .

Reimers FM, Schleicher A. A framework to guide an education response to the COVID-19 pandemic of 2020: OECD. https://www.hm.ee/sites/default/files/framework_guide_v1_002_harward.pdf .

Choi B, Jegatheeswaran L, Minocha A, Alhilani M, Nakhoul M, Mutengesa E. The impact of the COVID-19 pandemic on final year medical students in the United Kingdom: a national survey. BMC Med Educ. 2020;20:206–16. https://doi.org/10.1186/s12909-020-02117-1 .

Dyrbye LN, Thomas MR, Shanafelt TD. Systematic review of depression, anxiety, and other indicators of psychological distress among U.S. and Canadian medical students. Acad Med. 2006;81(4):354–73. https://doi.org/10.1097/00001888-200604000-00009 .

Download references

Acknowledgments

The authors wish to thank Newton Addo, UCSF Statistician.

Author information

Authors and affiliations.

Department of Emergency Medicine, University of California San Francisco School of Medicine, San Francisco General Hospital, 1001 Potrero Avenue, Building 5, Room #6A4, San Francisco, California, 94110, USA

Aaron J. Harries, Carmen Lee, Robert M. Rodriguez & Marianne Juarez

University of California San Francisco School of Medicine, San Francisco, California, USA

Lee Jones & John A. Davis

Clinical Emergency Medicine, University of California Irvine School of Medicine, Irvine, CA, USA

Megan Boysen-Osborn

University of Illinois College of Medicine, Chicago, IL, USA

Kathleen J. Kashima

Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA

N. Kevin Krane

Basic Science Education, Tulane University School of Medicine, New Orleans, Louisiana, USA

Guenevere Rae

Emergency Medicine, Ohio State College of Medicine, Columbus, OH, USA

Nicholas Kman

Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA

Jodi M. Langsfeld

You can also search for this author in PubMed   Google Scholar

Contributions

All authors made substantial contributions to the study and met the specific conditions listed in the BMC Medical Education editorial policy for authorship. All authors have read and approved the manuscript. AH as principal investigator contributed to study design, survey instrument creation, IRB submission for his respective medical school, acquisition of data and recruitment of other participating medical schools, data analysis, writing and editing the manuscript. CL contributed to background literature review, study design, survey instrument creation, acquisition of data, data analysis, writing and editing the manuscript. LJ contributed to study design, survey instrument creation, acquisition of data from his respective medical school and recruitment of other participating medical schools, data analysis, and editing the manuscript. RR contributed to study design, survey instrument creation, data analysis, writing and editing the manuscript. JD contributed to study design, survey instrument creation, recruitment of other participating medical schools, data analysis, and editing the manuscript. MBO contributed as individual site principal investigator obtaining IRB exemption acceptance and acquisition of data from her respective medical school along with editing the manuscript. KK contributed as individual site principal investigator obtaining IRB exemption acceptance and acquisition of data from her respective medical school along with editing the manuscript. NKK contributed as individual site co-principal investigator obtaining IRB exemption acceptance and acquisition of data from his respective medical school along with editing the manuscript. GR contributed as individual site co-principal investigator obtaining IRB exemption acceptance and acquisition of data from her respective medical school along with editing the manuscript. NK contributed as individual site principal investigator obtaining IRB exemption acceptance and acquisition of data from his respective medical school along with editing the manuscript. JL contributed as individual site principal investigator obtaining IRB exemption acceptance and acquisition of data from her respective medical school along with editing the manuscript. MJ contributed to study design, survey instrument creation, data analysis, writing and editing the manuscript.

Corresponding authors

Correspondence to Aaron J. Harries or Marianne Juarez .

Ethics declarations

Ethics approval and consent to participate.

This study was reviewed and deemed exempt by each participating medical school’s Institutional Review Board (IRB): University of California San Francisco School of Medicine, IRB# 20–30712, Reference# 280106, Tulane University School of Medicine, Reference # 2020–331, University of Illinois College of Medicine), IRB Protocol # 2012–0783, Ohio State University College of Medicine, Study ID# 2020E0463, Zucker School of Medicine at Hofstra/Northwell, Reference # 20200527-SOM-LAN-1, University of California Irvine School of Medicine, submitted self-exemption IRB form. In accordance with the IRB exemption approval, each survey participant received an email consent describing the study and their optional participation.

Consent for publication

This manuscript does not contain any individualized person’s data, therefore consent for publication was not necessary according to the IRB exemption approval.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: table s1..

Survey Instrument

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Harries, A.J., Lee, C., Jones, L. et al. Effects of the COVID-19 pandemic on medical students: a multicenter quantitative study. BMC Med Educ 21 , 14 (2021). https://doi.org/10.1186/s12909-020-02462-1

Download citation

Received : 29 July 2020

Accepted : 16 December 2020

Published : 06 January 2021

DOI : https://doi.org/10.1186/s12909-020-02462-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Undergraduate medical education
  • COVID-19 pandemic
  • Medical student anxiety

BMC Medical Education

ISSN: 1472-6920

quantitative research articles pdf

Advertisement

Issue Cover

  • Previous Issue

Special Issue: Editorial

Special issue: articles, research articles, bridging the divide between qualitative and quantitative science studies, numbers or no numbers in science studies, against method: exploding the boundary between qualitative and quantitative studies of science, is “the time ripe” for quantitative research on misconduct in science, the impact of j. d. bernal’s thoughts in the science of science upon china: implications for today’s quantitative studies of science, powerful numbers: exemplary quantitative studies of science that had policy impact, quantitative science studies should be framed with middle-range theories and concepts from the social sciences, whose text, whose mining, and to whose benefit, gender, science, and academic rank: key issues and approaches, geography of scientific knowledge: a proximity approach, beyond networks: aligning qualitative and computational science studies, past as prologue: approaches to the study of confirmation in science, from indicators to indicating interdisciplinarity: a participatory mapping methodology for research communities in-the-making, pandemic publishing: medical journals strongly speed up their publication process for covid-19, covid-19 publications: database coverage, citations, readers, tweets, news, facebook walls, reddit posts, mapping scholarly publications related to the sustainable development goals: do independent bibliometric approaches get the same results, a longitudinal analysis of university rankings, proposal success in horizon 2020: a study of the influence of consortium characteristics, concentration of danish research funding on individual researchers and research topics: patterns and potential drivers, longitudinal variation in national research publication portfolios: steps required to index balance and evenness, a typology of scientific breakthroughs, frequently cocited publications: features and kinetics, are disruption index indicators convergently valid the comparison of several indicator variants with assessments by peers, a gender equality paradox in academic publishing: countries with a higher proportion of female first-authored journal articles have larger first-author gender disparities between fields, greater female first author citation advantages do not associate with reduced or reducing gender disparities in academia, recency predicts bursts in the evolution of author citations, noncumulative measures of researcher citation impact, informed peer review for publication assessments: are improved impact measures worth the hassle, all downhill from the phd the typical impact trajectory of u.s. academic careers, product(s) added to cart, email alerts, affiliations.

  • Online ISSN 2641-3337

A product of The MIT Press

Mit press direct.

  • About MIT Press Direct

Information

  • Accessibility
  • For Authors
  • For Customers
  • For Librarians
  • Direct to Open
  • Open Access
  • Media Inquiries
  • Rights and Permissions
  • For Advertisers
  • About the MIT Press
  • The MIT Press Reader
  • MIT Press Blog
  • Seasonal Catalogs
  • MIT Press Home
  • Give to the MIT Press
  • Direct Service Desk
  • Terms of Use
  • Privacy Statement
  • Crossref Member
  • COUNTER Member  
  • The MIT Press colophon is registered in the U.S. Patent and Trademark Office

This Feature Is Available To Subscribers Only

Sign In or Create an Account

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • Health Expect
  • v.21(6); 2018 Dec

Public and patient involvement in quantitative health research: A statistical perspective

Ailish hannigan.

1 Public and Patient Involvement Research Unit, Graduate Entry Medical School, University of Limerick, Limerick, Ireland

2 Health Research Institute, University of Limerick, Limerick, Ireland

The majority of studies included in recent reviews of impact for public and patient involvement (PPI) in health research had a qualitative design. PPI in solely quantitative designs is underexplored, particularly its impact on statistical analysis. Statisticians in practice have a long history of working in both consultative (indirect) and collaborative (direct) roles in health research, yet their perspective on PPI in quantitative health research has never been explicitly examined.

To explore the potential and challenges of PPI from a statistical perspective at distinct stages of quantitative research, that is sampling, measurement and statistical analysis, distinguishing between indirect and direct PPI.

Conclusions

Statistical analysis is underpinned by having a representative sample, and a collaborative or direct approach to PPI may help achieve that by supporting access to and increasing participation of under‐represented groups in the population. Acknowledging and valuing the role of lay knowledge of the context in statistical analysis and in deciding what variables to measure may support collective learning and advance scientific understanding, as evidenced by the use of participatory modelling in other disciplines. A recurring issue for quantitative researchers, which reflects quantitative sampling methods, is the selection and required number of PPI contributors, and this requires further methodological development. Direct approaches to PPI in quantitative health research may potentially increase its impact, but the facilitation and partnership skills required may require further training for all stakeholders, including statisticians.

1. BACKGROUND

Public and patient involvement (PPI) in health research has been defined as research being carried out “with” or “by” members of the public rather than “to,” “about” or “for” them. 1 PPI covers a diverse range of approaches from “one off” information gathering to sustained partnerships. Tritter's conceptual framework for PPI distinguished between indirect involvement where information is gathered from patients and the public, but they do not have the power to make final decisions and direct involvement where patients and the public take part in the decision‐making. 2

A bibliometric review of the literature reported strong growth in the number of published empirical health research studies with public involvement. 3 In a systematic review of the impact of PPI on health and social care research, Brett et al 4 reported positive impacts at all stages of research from planning and undertaking the study to analysis, dissemination and implementation. The design of the majority of empirical research studies included in both reviews was qualitative (70% of studies in Brett. et al 4 and 73% in Boote et al 3 ). More significant tensions have been reported in community‐academic partnerships that use quantitative methods rather than solely qualitative methods, for example tensions with the community about having and recruiting to a “no intervention” comparison group. 5 Particular challenges for PPI have been reported in the most structured and regulated of quantitative designs, that is a randomized controlled trial (RCT), where there is little opportunity for flexibility once the trial has started 6 and Boote et al 3 concluded that researchers may find it easier to involve the public in qualitative rather than quantitative research.

If the full potential of PPI for health research is to be realized, its potential and challenges in quantitative research require more exploration, particularly the features of quantitative research which are different from qualitative research, for example, sampling, measurement and statistical analysis. Statisticians in practice have a long history of working with a variety of stakeholders in health research and have examined the difference between an indirect or consulting role for the statistician and a more direct, collaborative role, 7 yet their perspective has never been explicitly explored in health research with PPI. The objective of this study therefore was to critically reflect on the potential and challenges for PPI at distinct stages of quantitative research from a statistical perspective, distinguishing between direct and indirect approaches to PPI. 2

2. SAMPLE SIZE AND SELECTION

Quantitative research usually aims to provide precise, unbiased estimates of parameters of interest for the entire population which requires a large, randomly selected sample. Brett et al 4 reported a positive impact of PPI on recruitment in studies, but the representativeness of the sample is as important in quantitative research as sample size. Studies have shown that even when accrual targets have been met, the sample may not be fully representative of the population of interest. In cancer clinical trials, for example, those with health insurance and from higher socio‐economic backgrounds can be over‐represented, while older patients, ethnic minorities and so‐called hard‐to‐reach groups (often with higher cancer mortality rates) are under‐represented. 8 This limits the ability to generalize the results of the trials to all those with cancer. There is evidence that a direct approach to PPI with sustained partnerships between community leaders, primary care providers and clinical trial researchers can be effective in increasing awareness and participation of under‐represented groups in cancer clinical trials 9 , 10 and therefore help to achieve the goal of a population‐representative sample.

Collecting representative health data for some groups in the population may only be possible with their involvement. Marin et al 11 reports on the challenges of identifying an appropriate sampling frame for a health survey of Aboriginal adults in Southern Australia. Access to information identifying Aboriginal dwellings was not publically available, making it difficult to randomly select participants for large population household surveys. Trying to overcome this challenge involved reaching agreement on the process of research for Aboriginal adults with their local communities. An 8‐month consultation process was undertaken with representatives from multiple locations including Aboriginal owned lands in one region; however, it was ultimately agreed that it was culturally inappropriate for the research team to survey this region. The study demonstrated the opportunities for PPI in quantitative research with a representative sample of randomly chosen Aboriginal adults (excluding those resident in one region) ultimately achieved but also the challenges for PPI. The direct approach to involvement in this study, after a lengthy consultation process, resulted in a decision not to carry out the planned sampling and data collection in one region with implications for generalization of results and overall sample size.

Of course, given the importance of representativeness in quantitative research, there may be particular challenges for statisticians and quantitative researchers in accepting the term patient or public representative with some suggesting PPI contributor as a more appropriate term. 6 PPI representative may suggest to a quantitative researcher that an individual patient or member of the public is typical of an often diverse population, yet there is evidence that the opportunities and capacity to be involved as PPI contributors vary by level of education, income, cognitive skills and cultural background. 12 Dudley et al carried out a qualitative study of the impact of PPI in RCTs with patients and researchers from a cohort of RCTs. 6 The types of roles of PPI contributors described by researchers involved in the RCTs were grouped into oversight, managerial and responsive roles. Responsive PPI was described as informal and impromptu with researchers approaching multiple “responsive” PPI contributors as difficulties arose, for example advising on patient information sheets and follow‐up of patients. It was reported that contributions from responsive roles may carry more weight with the researchers in RCTs because it allowed access to a more diverse range of contributors who researchers saw as more “representative” of the target population.

3. MEASUREMENT

Measurement of quantitative data involves decisions about what to measure, how to measure it and how often to measure it with these decisions typically made by the research team. Without the involvement of patients and the public, however, important outcomes for people living with a condition have been missed or overlooked, for example fatigue for people with rheumatoid arthritis 13 or the long‐term effects of therapy for children with asthma. 14

Core outcome sets (COS) are a minimum set of agreed important outcomes to be measured in research on particular illnesses, conditions or treatments to ensure important outcomes are consistently reported and allow the results from multiple studies to be easily combined and compared. Young reported on workshops to explore what principles, methods and strategies that COS developers may need to consider when seeking patient input into the development of a COS. 15 The importance of distinguishing between an indirect role for patients in COS development where patients respond to a consensus survey or a direct role where patients are partners in planning, running and disseminating a COS study was highlighted by delegates in the workshops. While all delegates agreed that participation by patients should be meaningful and on an equal footing with other stakeholders, there was considerable uncertainty on how to achieve this, for example how many patients are needed in the COS development process or what proportion of patients relative to other stakeholders should be included. This raises the issue again of the number and selection of PPI contributors for quantitative researchers, and it was concluded that methodological work was needed to understand the COS development process from the perspective of patients and how the process may be improved for them.

Important considerations in longitudinal research are the number and timing of repeated measurements. From a statistical perspective, measurements on the same subject at different times are almost always correlated, with measurements taken close together in time being more highly correlated than measurements taken far apart in time. Unequal spacing of observation times may be more computationally challenging in statistical analysis of repeated measurements and missing data within subjects over time can be particularly challenging depending on the amount, cause and pattern of missing data. 16 There are therefore important statistical considerations to be taken into account in the design of longitudinal studies but these have to be balanced with input from PPI contributors on appropriate timing and frequency of data collection for potential participants.

Lucas et al reported on how European birth cohorts are engaging and consulting with young birth cohort members. 17 Of the 84 individual cohorts identified, only eight had a mechanism for consulting with parents and three a mechanism for consulting with young people themselves (usually “one off” consultations). Very varied follow‐up rates were reported from 13% to 84% more than 10 years after enrolment for individual data rounds of the birth cohorts. 17 Being motivated to continue to participate may be influenced by whether a participant believes the study is interesting, important, or relevant to them. 18 One of the key strategies for retention in the Australian Aboriginal Birth Cohort study was partnerships with community members with local knowledge who were involved in all phases of the follow‐up. 19 Retention rates of 86% at 11‐year follow‐up and 72% at 18‐year follow‐up were reported which demonstrates the potential of a direct approach to PPI. Ethical approval for the study involved an Aboriginal Ethical Sub‐committee which had the power of veto and a staged consent was used where participants had the right to refuse individual procedures at each wave. As with all missing data, this has implications for the statistical analysis yet only 10% of participants in this study chose to opt out of different assessments at follow‐up.

3.1. Statistical analysis

A report on the impact of PPI found that it had a positive impact at all stages of qualitative research including data analysis but that there was little evidence of its impact on quantitative data analysis. 20 It was concluded this lack of evidence may reflect a lack of involvement rather than an evidence gap. Booth et al 3 also suggested that the public may be more comfortable with interpreting interview and focus group data compared with numeric data. Low levels of numerical and statistical literacy in the general population may contribute to this.

Statistical analysis involves describing the data using appropriate graphical and numerical summaries (descriptive statistics) and using more advanced statistical methods to draw inferences about the population using the data from a sample (statistical inference). Choosing appropriate methods for statistical inference, testing the underlying assumptions and checking the adequacy of the models produced requires advanced statistical training and implementing them typically involves the use of statistical software or programming. Statisticians bring this expertise to quantitative health research and while it is important that the chosen methods are adequately communicated to all stakeholders, replicating this type of expertise in PPI contributors seems like an inefficient use of resources for PPI.

Quantitative data are, however, “not just numbers, they are numbers with a context” 21 and most practising statisticians agree that knowledge of the context is needed to carry out even a purely technical role effectively. 22 While many associate statistical analysis with objectivity, in practice, statisticians routinely use “subjective” external information to guide, for example the decision on what is a meaningful effect size; whether an outlier is an error in data entry or represents an unusual but meaningful observation; and potential issues with measurement of variables and confounding. 23 Gelman and Hennin argue that we should move beyond the discussion of objectivity and subjectivity in statistics and “replace each of them with broader collections of attributes, with objectivity replaced by transparency, consensus, impartiality and correspondence to observable reality, and subjectivity replaced by awareness of multiple perspectives and context dependence.” 23 This debate within statistics is relevant for PPI where the perceived objectivity and standardization of statistical analysis can be used as a reason for lack of involvement.

External information and context are particularly important in statistical modelling where statisticians are often faced with many potential predictors of an outcome. The “best” way of selecting a multivariable model is still unresolved from a statistical perspective, and it is generally agreed that subject matter knowledge, when available, should guide model building. 24 Even when the potential predictors are known, understanding the causal pathways of exposure on an outcome is challenging where the effect of a variable on the outcome can be direct or indirect. Christiaens et al 25 used a causal diagram to visualize the relationship between pain acceptance and personal control of women in labour and the use of pain medication during labour. Their analysis accounted for the maternal care context of the country where the women were giving birth and other characteristics such as age of the woman and duration of labour. The choice of these characteristics was underpinned by a literature review but women who have given birth also have expert knowledge on why they use pain relief and how other variables such as their personal beliefs and social context might influence that decision. 26

Collaborative or participatory modelling is an approach to scientific modelling in areas such as natural resource management which involves all stakeholders in the model building process. Participants can suggest characteristics for inclusion in the model and how they may impact on the outcome. Causal diagrams are then used to create a shared view across stakeholders. 27 Rockman et al 28 concluded, in the context of marine policy, that “participatory modelling has the potential to facilitate and structure discussions between scientists and stakeholders about uncertainties and the quality of the knowledge base. It can also contribute to collective learning, increase legitimacy and advance scientific understanding.”

There is emerging evidence that the importance of PPI in the development and application of modelling in health research is being recognized. Van Voorn 29 discussed the benefits and risks of PPI in health economic modelling of cost‐effectiveness of new drugs and treatment strategies, with public and patients described as the missing stakeholder group in the modelling process. The potential benefits included the expertise that patients could bring to the process, a greater understanding and possible acceptance by patients of the results of the models and improved model validation. The risks included potential patient bias and the increased resources required for training. The number and selection of patients to contribute to the process was also discussed with a suggestion to include patients “who were able to take a neutral view” and “at least five patients that differ significantly in their background,” again highlighting the focus of quantitative researchers on bias and sample size. The role for this type of participatory modelling in informing debate on public health problems is increasingly being recognized, drawing on the experience of its use in other areas where optimal use of limited resources is required to address complex problems in society. 30

4. CONCLUSIONS

Statistical analysis of quantitative data is underpinned by having a representative sample, and there is evidence that a direct approach to PPI can help achieve that by supporting access to and increasing participation of under‐represented groups in the population. The direct approach has also demonstrated its potential in the retention of those recruited over time, thus reducing bias caused by missing data in longitudinal studies. At all stages of statistical analysis, a statistician continuously refers back to the context of the data collected. 22 Lay knowledge of PPI contributors has an important role in providing this context, and there is evidence from other disciplines of the benefits of including this knowledge in analysis to support collective learning and advance scientific understanding.

The direct approach to PPI where patients and the public have the power to make decisions also brings challenges and the statistician needs to be able to clearly communicate the impact of each decision on the scientific rigour and validity of sampling, measurement and analysis to all stakeholders. Decisions made on participation impact on generalizability. Participatory modelling requires facilitation and partnership skills which may require further training for all stakeholders, including statisticians.

The direct and indirect role for PPI contributors mirrors what happens for statisticians in practice. Statisticians can have a consultative role, that is answering a specific statistical question or a collaborative role where a statistician works with others as equal partners to create new knowledge, with professional organizations for statisticians providing guidance and mentorship on moving from consulting to collaboration to leadership roles. 7 , 31 Statisticians therefore bring very relevant experience and understanding for PPI contributors on the ladder of participation in health research. Further exploration is required on the impact of direct compared to indirect involvement in quantitative research, drawing on the evidence base for community‐based participatory research in quantitative designs 9 and the framework for participatory health research and epidemiology. 32 , 33

CONFLICT OF INTERESTS

No conflict of interests.

ACKNOWLEDGEMENTS

Prof. Anne MacFarlane, Public and Patient Involvement Research Unit, University of Limerick, for discussion of ideas and comments on drafts.

Hannigan A. Public and patient involvement in quantitative health research: A statistical perspective . Health Expect . 2018; 21 :939–943. 10.1111/hex.12800 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

  • For Students
  • For Faculty
  • Interlibrary Loan
  • Request an Item from Everett Library
  • Study Rooms & Labs
  • Archives & Special Collections
  • Accessibility Guide
  • Citing Your Sources
  • Off-Campus Access
  • Online Tutorials
  • Library 101
  • Library Staff
  • Library Hours
  • Library Diversity Statement
  • Friends of the Library
  • History of Everett Library
  • Give to the Library
  • Library Mission & Vision
  • Library Policies

Service Alert

logo

  • Nursing Databases
  • APA Tutorial
  • EBP - Evidence Based Practice and PICO
  • Journal Search
  • Nursing Websites
  • Video Tutorials
  • Digital Literacy Sites

Articles from Ovid Database

Abnf articles.

  • Journal of Midwifery and Women's Health
  • Link to Nursing Research (journal) This journal includes nursing research and has some quantitative studies.
  • AJN, American Journal of Nursing
  • Increasing Access to Diabetes Education in Rural Alabama Through Telehealth
  • Evaluating the Impact of Smartphones on Nursing Workflow: Lessons Learned
  • Validity of the Montreal Cognitive Assessment Screener in Adolescents and Young Adults With and Without Congenital Heart Disease
  • Pharmacogenetics of Ketamine-Induced Emergence Phenomena
  • Pressure Pain Phenotypes in Women Before Breast Cancer Treatmen
  • Efficacy of a Breastfeeding Pain SelfManagement Intervention: A Pilot Randomized Controlled Tria
  • Stress and Health in Nursing Students The Nurse Engagement and Wellness Study
  • The Efficacy and Safety of an RN-Driven Ketamine Protocol for Adjunctive Analgesia During Burn Wound Care
  • Potassium Channel Candidate Genes Predict the Development of Secondary Lymphedema Following Breast Cancer Surgery
  • Social Support Is Inversely Associated With Sleep Disturbance, Inflammation, and Pain Severity in Chronic Low Back Pain.
  • Effect of a Nurse-Led Community Health Worker Intervention on Latent Tuberculosis Medication Completion Among Homeless Adults
  • Poor Sleep Predicts Increased Pain Perception Among Adults With Mild Cognitive Impairment
  • Feasibility, Acceptability, and Preliminary Effects of “Mindful Moms” A Mindful Physical Activity Intervention for Pregnant Women with Depression
  • Associations Among Nitric Oxide and Enkephalinases With Fibromyalgia Symptoms
  • Prescribed Walking for Glycemic Control and Symptom Management in Patients Without Diabetes Undergoing Chemotherapy
  • Dysmenorrhea Symptom-Based Phenotypes A Replication and Extension Study
  • Influence of Oxidative Stress-Related Genes on Susceptibility to Fibromyalgia
  • ABNF journal link
  • Cardiovascular Diseases in African-American Women: An Assessment of Awareness
  • Document links
  • << Previous: Digital Literacy Sites
  • Last Updated: Aug 7, 2023 1:53 PM
  • URL: https://library.queens.edu/nursing

IMAGES

  1. Essay On Qualitative And Quantitative Research Methods

    quantitative research articles pdf

  2. Quantitative Research Examples

    quantitative research articles pdf

  3. Quantitative Research

    quantitative research articles pdf

  4. (PDF) Quantitative Research: A Successful Investigation in Natural and

    quantitative research articles pdf

  5. (PDF) DATA ANALYSIS IN QUANTITATIVE RESEARCH

    quantitative research articles pdf

  6. (PDF) Quantitative Text Analysis

    quantitative research articles pdf

VIDEO

  1. Quantitative Research Methods

  2. What is research

  3. Qualitative and Quantitative Research Methods

  4. Quantitative research process

  5. Types of Research / Exploratory/ Descriptive /Quantitative/qualitative /Applied /Basic Research

  6. Quantitative and qualitative research

COMMENTS

  1. A Quantitative Study of the Impact of Social Media Reviews on Brand

    A Quantitative Study of the Impact of Social Media Reviews on Brand Perception A Thesis Presented to the Faculty of the Weissman School of Arts and Sciences Baruch College, The City University of New York In partial Fulfillment of the Requirements of the Degree of MASTER OF ARTS In CORPORATE COMMUNICATION By Neha Joshi 12/18/2015

  2. PDF Introduction to quantitative research

    Quantitative research is 'Explaining phenomena by collecting numerical data that are analysed using mathematically based methods (in particu-lar statistics)'. Let's go through this definition step by step. The first element is explaining phenomena. This is a key element of all research, be it quantitative or quali-tative.

  3. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  4. PDF Quantitative Research: A Successful Investigation in Natural and ...

    Quantitative research explains phenomena by collecting numerical unchanging detailed data that are analyzed using mathematical based methods, in particular statistics that pose questions of who, what, when, where, how much, how many, and how. It deals in numbers, logic, and an objective stance.

  5. (PDF) Quantitative Research Methods : A Synopsis Approach

    Jan 2024 Paul Saah Charles Mbohwa Nelson Sizwe Madonsela View Show abstract ... Quantitative analysis involves the systematic analysis of data through collection and statistical, mathematical,...

  6. Quantitative and Qualitative Approaches to Generalization and

    Whereas quantitative research uses variable-based models that abstract from individual cases, qualitative research favors case-based models that abstract from individual characteristics. Variable-based models are usually stated in the form of quantified sentences (scientific laws).

  7. (PDF) Quantitative Research Method

    ... A quantitative approach was seen as the best method to reach a large portion of the targeted population. According to Adedoyin (2020), quantitative research is known as the study of...

  8. PDF Research Design and Research Methods

    Quantitative Research is that this comparison is such a well-known topic in textbooks on research methods. In contrast, there is currently less consensus about the various purposes and procedures involved in combining qualitative and quantitative methods. The first part of this section thus paves the way for

  9. Effects of the COVID-19 pandemic on medical students: a multicenter

    Research article Open access Published: 06 January 2021 Effects of the COVID-19 pandemic on medical students: a multicenter quantitative study Aaron J. Harries, Carmen Lee, Lee Jones, Robert M. Rodriguez, John A. Davis, Megan Boysen-Osborn, Kathleen J. Kashima, N. Kevin Krane, Guenevere Rae, Nicholas Kman, Jodi M. Langsfeld & Marianne Juarez

  10. PDF Quantitative Research Methods

    Quantitative . Research Methods. T. his chapter focuses on research designs commonly used when conducting . quantitative research studies. The general purpose of quantitative research is to investigate a particular topic or activity through the measurement of variables in quantifiable terms. Quantitative approaches to conducting educational ...

  11. Quantitative Approaches for the Evaluation of Implementation Research

    3. Quantitative Methods for Evaluating Implementation Outcomes. While summative evaluation is distinguishable from formative evaluation (see Elwy et al. this issue), proper understanding of the implementation strategy requires using both methods, perhaps at different stages of implementation research (The Health Foundation, 2015).Formative evaluation is a rigorous assessment process designed ...

  12. PDF The Dignity for All Students Act: a Quantitative Study of One Upstate

    This quantitative study uses a survey to determine how public school teachers perceive the efficacy of the intervention of the Dignity For All Student's Act on the climate of civility in the classroom at one specific public middle school located in Upstate New York.

  13. A quantitative systematic review of the association between nurse skill

    The search strategy for each database is outlined in the Data S2 (Skill Mix OnlineSUPP_B_ElectDatabaseSearchStrat.pdf). Grey literature catalogues used included Research Online, Open Grey/EThOS, OAIster, Google Advanced Search and PsycEXTRA. Limiters included articles published between January 2000 - September 2018 and written in English.

  14. (PDF) Quantitative Research: A Successful Investigation in Natural and

    This article presents and analyzes the design of quantitative research. It also discusses the proper use and the components of quantitative research methodology. It is used to quantify...

  15. PDF The Usefulness of Qualitative and Quantitative Approaches and Methods

    Research designs are either classified as qualitative, quantitative research or mixed method. Method of research is generally believed to reside in paradigms and communities of scholars (Cohen, 2011, p4).

  16. Volume 1 Issue 3

    A gender equality paradox in academic publishing: Countries with a higher proportion of female first-authored journal articles have larger first-author gender disparities between fields. Mike Thelwall, Amalia Mas-Bleda. Quantitative Science Studies (2020) 1 (3): 1260-1282. Abstract.

  17. A Quantitative Study of the Effectiveness of Positive Behavior Support

    A Quantitative Study of the Effectiveness of Positive Behavior Support in Secondary Schools Rebecca Lynn Raftery Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd ... research used archival data funded in part by an OSEP Federal Grant (H324c030124). Primary

  18. PDF How to appraise quantitative research

    The CI is a number between 0 and 1 or is written as a per cent, demonstrating the level of confidence the reader can have in the result.12 The CI is calculated by subtracting the p value to 1 (1-p). If there is a p value of 0.05, the CI will be 1-0.05=0.95=95%.

  19. PDF Quantitative Research Methods

    An applied reference guide to research designs: Quantitative, qualitative, and mixed methods. Thousand Oaks, CA: Sage. Level Explanation METHOD 1 The method is the theoretical, philosophical, and data analytic perspective. The method can be quantitative, qualitative, or mixed (e.g., a quantitative method 1). RESEARCH 2

  20. (PDF) Quantitative and qualitative research methods: Considerations and

    (PDF) Quantitative and qualitative research methods: Considerations and issues in qualitative research Quantitative and qualitative research methods: Considerations and issues in...

  21. Public and patient involvement in quantitative health research: A

    Public and patient involvement (PPI) is a key component of health research, but its implementation in quantitative studies is often unclear or underreported. This article provides a comprehensive overview of the rationale, methods, challenges, and benefits of PPI in quantitative health research, based on a scoping review of relevant literature. It also offers practical guidance and examples ...

  22. The advantages and disadvantages of quantitative ...

    The article discusses previous quantitative LL research and introduces a quantitative approach developed by the author during a data gathering and annotation of 6016 items. Quantitative methods can provide valuable insight to the ordering of reality and the materialized discourses. Furthermore, they can mitigate personal bias.

  23. Quantitative Articles

    Nursing Articles from Ovid Database Link to Nursing Research (journal) This journal includes nursing research and has some quantitative studies. AJN, American Journal of Nursing Increasing Access to Diabetes Education in Rural Alabama Through Telehealth Evaluating the Impact of Smartphones on Nursing Workflow: Lessons Learned