Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

The Beginner's Guide to Statistical Analysis | 5 Steps & Examples

Statistical analysis means investigating trends, patterns, and relationships using quantitative data . It is an important research tool used by scientists, governments, businesses, and other organizations.

To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process . You need to specify your hypotheses and make decisions about your research design, sample size, and sampling procedure.

After collecting data from your sample, you can organize and summarize the data using descriptive statistics . Then, you can use inferential statistics to formally test hypotheses and make estimates about the population. Finally, you can interpret and generalize your findings.

This article is a practical introduction to statistical analysis for students and researchers. We’ll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables.

Table of contents

Step 1: write your hypotheses and plan your research design, step 2: collect data from a sample, step 3: summarize your data with descriptive statistics, step 4: test hypotheses or make estimates with inferential statistics, step 5: interpret your results, other interesting articles.

To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design.

Writing statistical hypotheses

The goal of research is often to investigate a relationship between variables within a population . You start with a prediction, and use statistical analysis to test that prediction.

A statistical hypothesis is a formal way of writing a prediction about a population. Every research prediction is rephrased into null and alternative hypotheses that can be tested using sample data.

While the null hypothesis always predicts no effect or no relationship between variables, the alternative hypothesis states your research prediction of an effect or relationship.

  • Null hypothesis: A 5-minute meditation exercise will have no effect on math test scores in teenagers.
  • Alternative hypothesis: A 5-minute meditation exercise will improve math test scores in teenagers.
  • Null hypothesis: Parental income and GPA have no relationship with each other in college students.
  • Alternative hypothesis: Parental income and GPA are positively correlated in college students.

Planning your research design

A research design is your overall strategy for data collection and analysis. It determines the statistical tests you can use to test your hypothesis later on.

First, decide whether your research will use a descriptive, correlational, or experimental design. Experiments directly influence variables, whereas descriptive and correlational studies only measure variables.

  • In an experimental design , you can assess a cause-and-effect relationship (e.g., the effect of meditation on test scores) using statistical tests of comparison or regression.
  • In a correlational design , you can explore relationships between variables (e.g., parental income and GPA) without any assumption of causality using correlation coefficients and significance tests.
  • In a descriptive design , you can study the characteristics of a population or phenomenon (e.g., the prevalence of anxiety in U.S. college students) using statistical tests to draw inferences from sample data.

Your research design also concerns whether you’ll compare participants at the group level or individual level, or both.

  • In a between-subjects design , you compare the group-level outcomes of participants who have been exposed to different treatments (e.g., those who performed a meditation exercise vs those who didn’t).
  • In a within-subjects design , you compare repeated measures from participants who have participated in all treatments of a study (e.g., scores from before and after performing a meditation exercise).
  • In a mixed (factorial) design , one variable is altered between subjects and another is altered within subjects (e.g., pretest and posttest scores from participants who either did or didn’t do a meditation exercise).
  • Experimental
  • Correlational

First, you’ll take baseline test scores from participants. Then, your participants will undergo a 5-minute meditation exercise. Finally, you’ll record participants’ scores from a second math test.

In this experiment, the independent variable is the 5-minute meditation exercise, and the dependent variable is the math test score from before and after the intervention. Example: Correlational research design In a correlational study, you test whether there is a relationship between parental income and GPA in graduating college students. To collect your data, you will ask participants to fill in a survey and self-report their parents’ incomes and their own GPA.

Measuring variables

When planning a research design, you should operationalize your variables and decide exactly how you will measure them.

For statistical analysis, it’s important to consider the level of measurement of your variables, which tells you what kind of data they contain:

  • Categorical data represents groupings. These may be nominal (e.g., gender) or ordinal (e.g. level of language ability).
  • Quantitative data represents amounts. These may be on an interval scale (e.g. test score) or a ratio scale (e.g. age).

Many variables can be measured at different levels of precision. For example, age data can be quantitative (8 years old) or categorical (young). If a variable is coded numerically (e.g., level of agreement from 1–5), it doesn’t automatically mean that it’s quantitative instead of categorical.

Identifying the measurement level is important for choosing appropriate statistics and hypothesis tests. For example, you can calculate a mean score with quantitative data, but not with categorical data.

In a research study, along with measures of your variables of interest, you’ll often collect data on relevant participant characteristics.

Prevent plagiarism. Run a free check.

Population vs sample

In most cases, it’s too difficult or expensive to collect data from every member of the population you’re interested in studying. Instead, you’ll collect data from a sample.

Statistical analysis allows you to apply your findings beyond your own sample as long as you use appropriate sampling procedures . You should aim for a sample that is representative of the population.

Sampling for statistical analysis

There are two main approaches to selecting a sample.

  • Probability sampling: every member of the population has a chance of being selected for the study through random selection.
  • Non-probability sampling: some members of the population are more likely than others to be selected for the study because of criteria such as convenience or voluntary self-selection.

In theory, for highly generalizable findings, you should use a probability sampling method. Random selection reduces several types of research bias , like sampling bias , and ensures that data from your sample is actually typical of the population. Parametric tests can be used to make strong statistical inferences when data are collected using probability sampling.

But in practice, it’s rarely possible to gather the ideal sample. While non-probability samples are more likely to at risk for biases like self-selection bias , they are much easier to recruit and collect data from. Non-parametric tests are more appropriate for non-probability samples, but they result in weaker inferences about the population.

If you want to use parametric tests for non-probability samples, you have to make the case that:

  • your sample is representative of the population you’re generalizing your findings to.
  • your sample lacks systematic bias.

Keep in mind that external validity means that you can only generalize your conclusions to others who share the characteristics of your sample. For instance, results from Western, Educated, Industrialized, Rich and Democratic samples (e.g., college students in the US) aren’t automatically applicable to all non-WEIRD populations.

If you apply parametric tests to data from non-probability samples, be sure to elaborate on the limitations of how far your results can be generalized in your discussion section .

Create an appropriate sampling procedure

Based on the resources available for your research, decide on how you’ll recruit participants.

  • Will you have resources to advertise your study widely, including outside of your university setting?
  • Will you have the means to recruit a diverse sample that represents a broad population?
  • Do you have time to contact and follow up with members of hard-to-reach groups?

Your participants are self-selected by their schools. Although you’re using a non-probability sample, you aim for a diverse and representative sample. Example: Sampling (correlational study) Your main population of interest is male college students in the US. Using social media advertising, you recruit senior-year male college students from a smaller subpopulation: seven universities in the Boston area.

Calculate sufficient sample size

Before recruiting participants, decide on your sample size either by looking at other studies in your field or using statistics. A sample that’s too small may be unrepresentative of the sample, while a sample that’s too large will be more costly than necessary.

There are many sample size calculators online. Different formulas are used depending on whether you have subgroups or how rigorous your study should be (e.g., in clinical research). As a rule of thumb, a minimum of 30 units or more per subgroup is necessary.

To use these calculators, you have to understand and input these key components:

  • Significance level (alpha): the risk of rejecting a true null hypothesis that you are willing to take, usually set at 5%.
  • Statistical power : the probability of your study detecting an effect of a certain size if there is one, usually 80% or higher.
  • Expected effect size : a standardized indication of how large the expected result of your study will be, usually based on other similar studies.
  • Population standard deviation: an estimate of the population parameter based on a previous study or a pilot study of your own.

Once you’ve collected all of your data, you can inspect them and calculate descriptive statistics that summarize them.

Inspect your data

There are various ways to inspect your data, including the following:

  • Organizing data from each variable in frequency distribution tables .
  • Displaying data from a key variable in a bar chart to view the distribution of responses.
  • Visualizing the relationship between two variables using a scatter plot .

By visualizing your data in tables and graphs, you can assess whether your data follow a skewed or normal distribution and whether there are any outliers or missing data.

A normal distribution means that your data are symmetrically distributed around a center where most values lie, with the values tapering off at the tail ends.

Mean, median, mode, and standard deviation in a normal distribution

In contrast, a skewed distribution is asymmetric and has more values on one end than the other. The shape of the distribution is important to keep in mind because only some descriptive statistics should be used with skewed distributions.

Extreme outliers can also produce misleading statistics, so you may need a systematic approach to dealing with these values.

Calculate measures of central tendency

Measures of central tendency describe where most of the values in a data set lie. Three main measures of central tendency are often reported:

  • Mode : the most popular response or value in the data set.
  • Median : the value in the exact middle of the data set when ordered from low to high.
  • Mean : the sum of all values divided by the number of values.

However, depending on the shape of the distribution and level of measurement, only one or two of these measures may be appropriate. For example, many demographic characteristics can only be described using the mode or proportions, while a variable like reaction time may not have a mode at all.

Calculate measures of variability

Measures of variability tell you how spread out the values in a data set are. Four main measures of variability are often reported:

  • Range : the highest value minus the lowest value of the data set.
  • Interquartile range : the range of the middle half of the data set.
  • Standard deviation : the average distance between each value in your data set and the mean.
  • Variance : the square of the standard deviation.

Once again, the shape of the distribution and level of measurement should guide your choice of variability statistics. The interquartile range is the best measure for skewed distributions, while standard deviation and variance provide the best information for normal distributions.

Using your table, you should check whether the units of the descriptive statistics are comparable for pretest and posttest scores. For example, are the variance levels similar across the groups? Are there any extreme values? If there are, you may need to identify and remove extreme outliers in your data set or transform your data before performing a statistical test.

From this table, we can see that the mean score increased after the meditation exercise, and the variances of the two scores are comparable. Next, we can perform a statistical test to find out if this improvement in test scores is statistically significant in the population. Example: Descriptive statistics (correlational study) After collecting data from 653 students, you tabulate descriptive statistics for annual parental income and GPA.

It’s important to check whether you have a broad range of data points. If you don’t, your data may be skewed towards some groups more than others (e.g., high academic achievers), and only limited inferences can be made about a relationship.

A number that describes a sample is called a statistic , while a number describing a population is called a parameter . Using inferential statistics , you can make conclusions about population parameters based on sample statistics.

Researchers often use two main methods (simultaneously) to make inferences in statistics.

  • Estimation: calculating population parameters based on sample statistics.
  • Hypothesis testing: a formal process for testing research predictions about the population using samples.

You can make two types of estimates of population parameters from sample statistics:

  • A point estimate : a value that represents your best guess of the exact parameter.
  • An interval estimate : a range of values that represent your best guess of where the parameter lies.

If your aim is to infer and report population characteristics from sample data, it’s best to use both point and interval estimates in your paper.

You can consider a sample statistic a point estimate for the population parameter when you have a representative sample (e.g., in a wide public opinion poll, the proportion of a sample that supports the current government is taken as the population proportion of government supporters).

There’s always error involved in estimation, so you should also provide a confidence interval as an interval estimate to show the variability around a point estimate.

A confidence interval uses the standard error and the z score from the standard normal distribution to convey where you’d generally expect to find the population parameter most of the time.

Hypothesis testing

Using data from a sample, you can test hypotheses about relationships between variables in the population. Hypothesis testing starts with the assumption that the null hypothesis is true in the population, and you use statistical tests to assess whether the null hypothesis can be rejected or not.

Statistical tests determine where your sample data would lie on an expected distribution of sample data if the null hypothesis were true. These tests give two main outputs:

  • A test statistic tells you how much your data differs from the null hypothesis of the test.
  • A p value tells you the likelihood of obtaining your results if the null hypothesis is actually true in the population.

Statistical tests come in three main varieties:

  • Comparison tests assess group differences in outcomes.
  • Regression tests assess cause-and-effect relationships between variables.
  • Correlation tests assess relationships between variables without assuming causation.

Your choice of statistical test depends on your research questions, research design, sampling method, and data characteristics.

Parametric tests

Parametric tests make powerful inferences about the population based on sample data. But to use them, some assumptions must be met, and only some types of variables can be used. If your data violate these assumptions, you can perform appropriate data transformations or use alternative non-parametric tests instead.

A regression models the extent to which changes in a predictor variable results in changes in outcome variable(s).

  • A simple linear regression includes one predictor variable and one outcome variable.
  • A multiple linear regression includes two or more predictor variables and one outcome variable.

Comparison tests usually compare the means of groups. These may be the means of different groups within a sample (e.g., a treatment and control group), the means of one sample group taken at different times (e.g., pretest and posttest scores), or a sample mean and a population mean.

  • A t test is for exactly 1 or 2 groups when the sample is small (30 or less).
  • A z test is for exactly 1 or 2 groups when the sample is large.
  • An ANOVA is for 3 or more groups.

The z and t tests have subtypes based on the number and types of samples and the hypotheses:

  • If you have only one sample that you want to compare to a population mean, use a one-sample test .
  • If you have paired measurements (within-subjects design), use a dependent (paired) samples test .
  • If you have completely separate measurements from two unmatched groups (between-subjects design), use an independent (unpaired) samples test .
  • If you expect a difference between groups in a specific direction, use a one-tailed test .
  • If you don’t have any expectations for the direction of a difference between groups, use a two-tailed test .

The only parametric correlation test is Pearson’s r . The correlation coefficient ( r ) tells you the strength of a linear relationship between two quantitative variables.

However, to test whether the correlation in the sample is strong enough to be important in the population, you also need to perform a significance test of the correlation coefficient, usually a t test, to obtain a p value. This test uses your sample size to calculate how much the correlation coefficient differs from zero in the population.

You use a dependent-samples, one-tailed t test to assess whether the meditation exercise significantly improved math test scores. The test gives you:

  • a t value (test statistic) of 3.00
  • a p value of 0.0028

Although Pearson’s r is a test statistic, it doesn’t tell you anything about how significant the correlation is in the population. You also need to test whether this sample correlation coefficient is large enough to demonstrate a correlation in the population.

A t test can also determine how significantly a correlation coefficient differs from zero based on sample size. Since you expect a positive correlation between parental income and GPA, you use a one-sample, one-tailed t test. The t test gives you:

  • a t value of 3.08
  • a p value of 0.001

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The final step of statistical analysis is interpreting your results.

Statistical significance

In hypothesis testing, statistical significance is the main criterion for forming conclusions. You compare your p value to a set significance level (usually 0.05) to decide whether your results are statistically significant or non-significant.

Statistically significant results are considered unlikely to have arisen solely due to chance. There is only a very low chance of such a result occurring if the null hypothesis is true in the population.

This means that you believe the meditation intervention, rather than random factors, directly caused the increase in test scores. Example: Interpret your results (correlational study) You compare your p value of 0.001 to your significance threshold of 0.05. With a p value under this threshold, you can reject the null hypothesis. This indicates a statistically significant correlation between parental income and GPA in male college students.

Note that correlation doesn’t always mean causation, because there are often many underlying factors contributing to a complex variable like GPA. Even if one variable is related to another, this may be because of a third variable influencing both of them, or indirect links between the two variables.

Effect size

A statistically significant result doesn’t necessarily mean that there are important real life applications or clinical outcomes for a finding.

In contrast, the effect size indicates the practical significance of your results. It’s important to report effect sizes along with your inferential statistics for a complete picture of your results. You should also report interval estimates of effect sizes if you’re writing an APA style paper .

With a Cohen’s d of 0.72, there’s medium to high practical significance to your finding that the meditation exercise improved test scores. Example: Effect size (correlational study) To determine the effect size of the correlation coefficient, you compare your Pearson’s r value to Cohen’s effect size criteria.

Decision errors

Type I and Type II errors are mistakes made in research conclusions. A Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s false.

You can aim to minimize the risk of these errors by selecting an optimal significance level and ensuring high power . However, there’s a trade-off between the two errors, so a fine balance is necessary.

Frequentist versus Bayesian statistics

Traditionally, frequentist statistics emphasizes null hypothesis significance testing and always starts with the assumption of a true null hypothesis.

However, Bayesian statistics has grown in popularity as an alternative approach in the last few decades. In this approach, you use previous research to continually update your hypotheses based on your expectations and observations.

Bayes factor compares the relative strength of evidence for the null versus the alternative hypothesis rather than making a conclusion about rejecting the null hypothesis or not.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval

Methodology

  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hostile attribution bias
  • Affect heuristic

Is this article helpful?

Other students also liked.

  • Descriptive Statistics | Definitions, Types, Examples
  • Inferential Statistics | An Easy Introduction & Examples
  • Choosing the Right Statistical Test | Types & Examples

More interesting articles

  • Akaike Information Criterion | When & How to Use It (Example)
  • An Easy Introduction to Statistical Significance (With Examples)
  • An Introduction to t Tests | Definitions, Formula and Examples
  • ANOVA in R | A Complete Step-by-Step Guide with Examples
  • Central Limit Theorem | Formula, Definition & Examples
  • Central Tendency | Understanding the Mean, Median & Mode
  • Chi-Square (Χ²) Distributions | Definition & Examples
  • Chi-Square (Χ²) Table | Examples & Downloadable Table
  • Chi-Square (Χ²) Tests | Types, Formula & Examples
  • Chi-Square Goodness of Fit Test | Formula, Guide & Examples
  • Chi-Square Test of Independence | Formula, Guide & Examples
  • Coefficient of Determination (R²) | Calculation & Interpretation
  • Correlation Coefficient | Types, Formulas & Examples
  • Frequency Distribution | Tables, Types & Examples
  • How to Calculate Standard Deviation (Guide) | Calculator & Examples
  • How to Calculate Variance | Calculator, Analysis & Examples
  • How to Find Degrees of Freedom | Definition & Formula
  • How to Find Interquartile Range (IQR) | Calculator & Examples
  • How to Find Outliers | 4 Ways with Examples & Explanation
  • How to Find the Geometric Mean | Calculator & Formula
  • How to Find the Mean | Definition, Examples & Calculator
  • How to Find the Median | Definition, Examples & Calculator
  • How to Find the Mode | Definition, Examples & Calculator
  • How to Find the Range of a Data Set | Calculator & Formula
  • Hypothesis Testing | A Step-by-Step Guide with Easy Examples
  • Interval Data and How to Analyze It | Definitions & Examples
  • Levels of Measurement | Nominal, Ordinal, Interval and Ratio
  • Linear Regression in R | A Step-by-Step Guide & Examples
  • Missing Data | Types, Explanation, & Imputation
  • Multiple Linear Regression | A Quick Guide (Examples)
  • Nominal Data | Definition, Examples, Data Collection & Analysis
  • Normal Distribution | Examples, Formulas, & Uses
  • Null and Alternative Hypotheses | Definitions & Examples
  • One-way ANOVA | When and How to Use It (With Examples)
  • Ordinal Data | Definition, Examples, Data Collection & Analysis
  • Parameter vs Statistic | Definitions, Differences & Examples
  • Pearson Correlation Coefficient (r) | Guide & Examples
  • Poisson Distributions | Definition, Formula & Examples
  • Probability Distribution | Formula, Types, & Examples
  • Quartiles & Quantiles | Calculation, Definition & Interpretation
  • Ratio Scales | Definition, Examples, & Data Analysis
  • Simple Linear Regression | An Easy Introduction & Examples
  • Skewness | Definition, Examples & Formula
  • Statistical Power and Why It Matters | A Simple Introduction
  • Student's t Table (Free Download) | Guide & Examples
  • T-distribution: What it is and how to use it
  • Test statistics | Definition, Interpretation, and Examples
  • The Standard Normal Distribution | Calculator, Examples & Uses
  • Two-Way ANOVA | Examples & When To Use It
  • Type I & Type II Errors | Differences, Examples, Visualizations
  • Understanding Confidence Intervals | Easy Examples & Formulas
  • Understanding P values | Definition and Examples
  • Variability | Calculating Range, IQR, Variance, Standard Deviation
  • What is Effect Size and Why Does It Matter? (Examples)
  • What Is Kurtosis? | Definition, Examples & Formula
  • What Is Standard Error? | How to Calculate (Guide with Examples)

What is your plagiarism score?

Library Home

Introduction to Statistics

(15 reviews)

statistical analysis 1 assignment 4

David Lane, Rice University

Copyright Year: 2003

Publisher: David Lane

Language: English

Formats Available

Conditions of use.

No Rights Reserved

Learn more about reviews.

Reviewed by Terri Torres, professor, Oregon Institute of Technology on 8/17/23

This author covers all the topics that would be covered in an introductory statistics course plus some. I could imagine using it for two courses at my university, which is on the quarter system. I would rather have the problem of too many topics... read more

Comprehensiveness rating: 5 see less

This author covers all the topics that would be covered in an introductory statistics course plus some. I could imagine using it for two courses at my university, which is on the quarter system. I would rather have the problem of too many topics rather than too few.

Content Accuracy rating: 5

Yes, Lane is both thorough and accurate.

Relevance/Longevity rating: 5

What is covered is what is usually covered in an introductory statistics book. The only topic I may, given sufficient time, cover is bootstrapping.

Clarity rating: 5

The book is clear and well-written. For the trickier topics, simulations are included to help with understanding.

Consistency rating: 5

All is organized in a way that is consistent with the previous topic.

Modularity rating: 5

The text is organized in a way that easily enables navigation.

Organization/Structure/Flow rating: 5

The text is organized like most statistics texts.

Interface rating: 5

Easy navigation.

Grammatical Errors rating: 5

I didn't see any grammatical errors.

Cultural Relevance rating: 5

Nothing is included that is culturally insensitive.

The videos that accompany this text are short and easy to watch and understand. Videos should be short enough to teach, but not so long that they are tiresome. This text includes almost everything: videos, simulations, case studies---all nicely organized in one spot. In addition, Lane has promised to send an instructor's manual and slide deck.

Reviewed by Professor Sandberg, Professor, Framingham State University on 6/29/21

This text covers all the usual topics in an Introduction to Statistics for college students. In addition, it has some additional topics that are useful. read more

This text covers all the usual topics in an Introduction to Statistics for college students. In addition, it has some additional topics that are useful.

I did not find any errors.

Some of the examples are dated. And the frequent use of male/female examples need updating in terms of current gender splits.

I found it was easy to read and understand and I expect that students would also find the writing clear and the explanations accessible.

Even with different authors of chapter, the writing is consistent.

The text is well organized into sections making it easy to assign individual topics and sections.

The topics are presented in the usual order. Regression comes later in the text but there is a difference of opinions about whether to present it early with descriptive statistics for bivariate data or later with inferential statistics.

I had no problem navigating the text online.

The writing is grammatical correct.

I saw no issues that would be offensive.

I did like this text. It seems like it would be a good choice for most introductory statistics courses. I liked that the Monty Hall problem was included in the probability section. The author offers to provide an instructor's manual, PowerPoint slides and additional questions. These additional resources are very helpful and not always available with online OER texts.

Reviewed by Emilio Vazquez, Associate Professor, Trine University on 4/23/21

This appears to be an excellent textbook for an Introductory Course in Statistics. It covers subjects in enough depth to fulfill the needs of a beginner in Statistics work yet is not so complex as to be overwhelming. read more

This appears to be an excellent textbook for an Introductory Course in Statistics. It covers subjects in enough depth to fulfill the needs of a beginner in Statistics work yet is not so complex as to be overwhelming.

I found no errors in their discussions. Did not work out all of the questions and answers but my sampling did not reveal any errors.

Some of the examples may need updating depending on the times but the examples are still relevant at this time.

This is a Statistics text so a little dry. I found that the derivation of some of the formulas was not explained. However the background is there to allow the instructor to derive these in class if desired.

The text is consistent throughout using the same verbiage in various sections.

The text dose lend itself to reasonable reading assignments. For example the chapter (Chapter 3) on Summarizing Distributions covers Central Tendency and its associated components in an easy 20 pages with Measures of Variability making up most of the rest of the chapter and covering approximately another 20 pages. Exercises are available at the end of each chapter making it easy for the instructor to assign reading and exercises to be discussed in class.

The textbook flows easily from Descriptive to Inferential Statistics with chapters on Sampling and Estimation preceding chapters on hypothesis testing

I had no problems with navigation

All textbooks have a few errors but certainly nothing glaring or making text difficult

I saw no issues and I am part of a cultural minority in the US

Overall I found this to be a excellent in-depth overview of Statistical Theory, Concepts and Analysis. The length of the textbook appears to be more than adequate for a one-semester course in Introduction to Statistics. As I no longer teach a full statistics course but simply a few lectures as part of our Research Curriculum, I am recommending this book to my students as a good reference. Especially as it is available on-line and in Open Access.

Reviewed by Audrey Hickert, Assistant Professor, Southern Illinois University Carbondale on 3/29/21

All of the major topics of an introductory level statistics course for social science are covered. Background areas include levels of measurement and research design basics. Descriptive statistics include all major measures of central tendency and... read more

All of the major topics of an introductory level statistics course for social science are covered. Background areas include levels of measurement and research design basics. Descriptive statistics include all major measures of central tendency and dispersion/variation. Building blocks for inferential statistics include sampling distributions, the standard normal curve (z scores), and hypothesis testing sections. Inferential statistics include how to calculate confidence intervals, as well as conduct tests of one-sample tests of the population mean (Z- and t-tests), two-sample tests of the difference in population means (Z- and t-tests), chi square test of independence, correlation, and regression. Doesn’t include full probability distribution tables (e.g., t or Z), but those can be easily found online in many places.

I did not find any errors or issues of inaccuracy. When a particular method or practice is debated in the field, the authors acknowledge it (and provide citations in some circumstances).

Relevance/Longevity rating: 4

Basic statistics are standard, so the core information will remain relevant in perpetuity. Some of the examples are dated (e.g., salaries from 1999), but not problematic.

Clarity rating: 4

All of the key terms, formulas, and logic for statistical tests are clearly explained. The book sometimes uses different notation than other entry-level books. For example, the variance formula uses "M" for mean, rather than x-bar.

The explanations are consistent and build from and relate to corresponding sections that are listed in each unit.

Modularity is a strength of this text in both the PDF and interactive online format. Students can easily navigate to the necessary sections and each starts with a “Prerequisites” list of other sections in the book for those who need the additional background material. Instructors could easily compile concise sub-sections of the book for readings.

The presentation of topics differs somewhat from the standard introductory social science statistics textbooks I have used before. However, the modularity allows the instructor and student to work through the discrete sections in the desired order.

Interface rating: 4

For the most part the display of all images/charts is good and navigation is straightforward. One concern is that the organization of the Table of Contents does not exactly match the organizational outline at the start of each chapter in the PDF version. For example, sometimes there are more detailed sub-headings at the start of chapter and occasionally slightly different section headings/titles. There are also inconsistencies in section listings at start of chapters vs. start of sub-sections.

The text is easy to read and free from any obvious grammatical errors.

Although some of the examples are outdated, I did not review any that were offensive. One example of an outdated reference is using descriptive data on “Men per 100 Women” in U.S. cities as “useful if we are looking for an opposite-sex partner”.

This is a good introduction level statistics text book if you have a course with students who may be intimated by longer texts with more detailed information. Just the core basics are provided here and it is easy to select the sections you need. It is a good text if you plan to supplement with an array of your own materials (lectures, practice, etc.) that are specifically tailored to your discipline (e.g., criminal justice and criminology). Be advised that some formulas use different notation than other standard texts, so you will need to point that out to students if they differ from your lectures or assessment materials.

Reviewed by Shahar Boneh, Professor, Metropolitan State University of Denver on 3/26/21, updated 4/22/21

The textbook is indeed quite comprehensive. It can accommodate any style of introductory statistics course. read more

The textbook is indeed quite comprehensive. It can accommodate any style of introductory statistics course.

The text seems to be statistically accurate.

It is a little too extensive, which requires instructors to cover it selectively, and has a potential to confuse the students.

It is written clearly.

Consistency rating: 4

The terminology is fairly consistent. There is room for some improvement.

By the nature of the subject, the topics have to be presented in a sequential and coherent order. However, the book breaks things down quite effectively.

Organization/Structure/Flow rating: 3

Some of the topics are interleaved and not presented in the order I would like to cover them.

Good interface.

The grammar is ok.

The book seems to be culturally neutral, and not offensive in any way.

I really liked the simulations that go with the book. Parts of the book are a little too advanced for students who are learning statistics for the first time.

Reviewed by Julie Gray, Adjunct Assistant Professor, University of Texas at Arlington on 2/26/21

The textbook is for beginner-level students. The concept development is appropriate--there is always room to grow to high higher level, but for an introduction, the basics are what is needed. This is a well-thought-through OER textbook project by... read more

The textbook is for beginner-level students. The concept development is appropriate--there is always room to grow to high higher level, but for an introduction, the basics are what is needed. This is a well-thought-through OER textbook project by Dr. Lane and colleagues. It is obvious that several iterations have only made it better.

I found all the material accurate.

Essentially, statistical concepts at the introductory level are accepted as universal. This suggests that the relevance of this textbook will continue for a long time.

The book is well written for introducing beginners to statistical concepts. The figures, tables, and animated examples reinforce the clarity of the written text.

Yes, the information is consistent; when it is introduced in early chapters it ties in well in later chapters that build on and add more understanding for the topic.

Modularity rating: 4

The book is well-written with attention to modularity where possible. Due to the nature of statistics, that is not always possible. The content is presented in the order that I usually teach these concepts.

The organization of the book is good, I particularly like the sample lecture slide presentations and the problem set with solutions for use in quizzes and exams. These are available by writing to the author. It is wonderful to have access to these helpful resources for instructors to use in preparation.

I did not find any interface issues.

The book is well written. In my reading I did not notice grammatical errors.

For this subject and in the examples given, I did not notice any cultural issues.

For the field of social work where qualitative data is as common as quantitative, the importance of giving students the rationale or the motivation to learn the quantitative side is understated. To use this text as an introductory statistics OER textbook in a social work curriculum, the instructor will want to bring in field-relevant examples to engage and motivate students. The field needs data-driven decision making and evidence-based practices to become more ubiquitous than not. Preparing future social workers by teaching introductory statistics is essential to meet that goal.

Reviewed by Mamata Marme, Assistant Professor, Augustana College on 6/25/19

This textbook offers a fairly comprehensive summary of what should be discussed in an introductory course in Statistics. The statistical literacy exercises are particularly interesting. It would be helpful to have the statistical tables... read more

Comprehensiveness rating: 4 see less

This textbook offers a fairly comprehensive summary of what should be discussed in an introductory course in Statistics. The statistical literacy exercises are particularly interesting. It would be helpful to have the statistical tables attached in the same package, even though they are available online.

The terminology and notation used in the textbook is pretty standard. The content is accurate.

The statistical literacy example are up to date but will need to be updated fairly regularly to keep the textbook fresh. The applications within the chapter are accessible and can be used fairly easily over a couple of editions.

The textbook does not necessarily explain the derivation of some of the formulae and this will need to be augmented by the instructor in class discussion. What is beneficial is that there are multiple ways that a topic is discussed using graphs, calculations and explanations of the results. Statistics textbooks have to cover a wide variety of topics with a fair amount of depth. To do this concisely is difficult. There is a fine line between being concise and clear, which this textbook does well, and being somewhat dry. It may be up to the instructor to bring case studies into the readings we are going through the topics rather than wait until the end of the chapter.

The textbook uses standard notation and terminology. The heading section of each chapter is closely tied to topics that are covered. The end of chapter problems and the statistical literacy applications are closely tied to the material covered.

The authors have done a good job treating each chapter as if they stand alone. The lack of connection to a past reference may create a sense of disconnect between the topics discussed

The text's "modularity" does make the flow of the material a little disconnected. If would be better if there was accountability of what a student should already have learnt in a different section. The earlier material is easy to find but not consistently referred to in the text.

I had no problem with the interface. The online version is more visually interesting than the pdf version.

I did not see any grammatical errors.

Cultural Relevance rating: 4

I am not sure how to evaluate this. The examples are mostly based on the American experience and the data alluded to mostly domestic. However, I am not sure if that creates a problem in understanding the methodology.

Overall, this textbook will cover most of the topics in a survey of statistics course.

Reviewed by Alexandra Verkhovtseva, Professor, Anoka-Ramsey Community College on 6/3/19

This is a comprehensive enough text, considering that it is not easy to create a comprehensive statistics textbook. It is suitable for an introductory statistics course for non-math majors. It contains twenty-one chapters, covering the wide range... read more

This is a comprehensive enough text, considering that it is not easy to create a comprehensive statistics textbook. It is suitable for an introductory statistics course for non-math majors. It contains twenty-one chapters, covering the wide range of intro stats topics (and some more), plus the case studies and the glossary.

The content is pretty accurate, I did not find any biases or errors.

The book contains fairly recent data presented in the form of exercises, examples and applications. The topics are up-to-date, and appropriate technology is used for examples, applications, and case studies.

The language is simple and clear, which is a good thing, since students are usually scared of this class, and instructors are looking for something to put them at ease. I would, however, try to make it a little more interesting, exciting, or may be even funny.

Consistency is good, the book has a great structure. I like how each chapter has prerequisites and learner outcomes, this gives students a good idea of what to expect. Material in this book is covered in good detail.

The text can be easily divided into sub-sections, some of which can be omitted if needed. The chapter on regression is covered towards the end (chapter 14), but part of it can be covered sooner in the course.

The book contains well organized chapters that makes reading through easy and understandable. The order of chapters and sections is clear and logical.

The online version has many functions and is easy to navigate. This book also comes with a PDF version. There is no distortion of images or charts. The text is clean and clear, the examples provided contain appropriate format of data presentation.

No grammatical errors found.

The text uses simple and clear language, which is helpful for non-native speakers. I would include more culturally-relevant examples and case studies. Overall, good text.

In all, this book is a good learning experience. It contains tools and techniques that free and easy to use and also easy to modify for both, students and instructors. I very much appreciate this opportunity to use this textbook at no cost for our students.

Reviewed by Dabrina Dutcher, Assistant Professor, Bucknell University on 3/4/19

This is a reasonably thorough first-semester statistics book for most classes. It would have worked well for the general statistics courses I have taught in the past but is not as suitable for specialized introductory statistics courses for... read more

This is a reasonably thorough first-semester statistics book for most classes. It would have worked well for the general statistics courses I have taught in the past but is not as suitable for specialized introductory statistics courses for engineers or business applications. That is OK, they have separate texts for that! The only sections that feel somewhat light in terms of content are the confidence intervals and ANOVA sections. Given that these topics are often sort of crammed in at the end of many introductory classes, that might not be problematic for many instructors. It should also be pointed out that while there are a couple of chapters on probability, this book spends presents most formulas as "black boxes" rather than worry about the derivation or origin of the formulas. The probability sections do not include any significant combinatorics work, which is sometimes included at this level.

I did not find any errors in the formulas presented but I did not work many end-of-chapter problems to gauge the accuracy of their answers.

There isn't much changing in the introductory stats world, so I have no concerns about the book becoming outdated rapidly. The examples and problems still feel relevant and reasonably modern. My only concern is that the statistical tool most often referenced in the book are TI-83/84 type calculators. As students increasingly buy TI-89s or Inspires, these sections of the book may lose relevance faster than other parts.

Solid. The book gives a list of key terms and their definitions at the end of each chapter which is a nice feature. It also has a formula review at the end of each chapter. I can imagine that these are heavily used by students when studying! Formulas are easy to find and read and are well defined. There are a few areas that I might have found frustrating as a student. For example, the explanation for the difference in formulas for a population vs sample standard deviation is quite weak. Again, this is a book that focuses on sort of a "black-box" approach but you may have to supplement such sections for some students.

I did not detect any problems with inconsistent symbol use or switches in terminology.

Modularity rating: 3

This low rating should not be taken as an indicator of an issue with this book but would be true of virtually any statistics book. Different books still use different variable symbols even for basic calculated statistics. So trying to use a chapter of this book without some sort of symbol/variable cheat-sheet would likely be frustrating to the students.

However, I think it would be possible to skip some chapters or use the chapters in a different order without any loss of functionality.

This book uses a very standard order for the material. The chapter on regressions comes later than it does in some texts but it doesn't really matter since that chapter never seems to fit smoothly anywhere.

There are numerous end of chapter problems, some with answers, available in this book. I'm vacillating on whether these problems would be more useful if they were distributed after each relevant section or are better clumped at the end of the whole chapter. That might be a matter of individual preference.

I did not detect any problems.

I found no errors. However, there were several sections where the punctuation seemed non-ideal. This did not affect the over-all useability of the book though

I'm not sure how well this book would work internationally as many of the examples contain domestic (American) references. However, I did not see anything offensive or biased in the book.

Reviewed by Ilgin Sager, Assistant Professor, University of Missouri - St. Louis on 1/14/19

As the title implies, this is a brief introduction textbook. It covers the fundamental of the introductory statistics, however not a comprehensive text on the subject. A teacher can use this book as the sole text of an introductory statistics.... read more

As the title implies, this is a brief introduction textbook. It covers the fundamental of the introductory statistics, however not a comprehensive text on the subject. A teacher can use this book as the sole text of an introductory statistics. The prose format of definitions and theorems make theoretical concepts accessible to non-math major students. The textbook covers all chapters required in this level course.

It is accurate; the subject matter in the examples to be up to date, is timeless and wouldn't need to be revised in future editions; there is no error except a few typographical errors. There are no logic errors or incorrect explanations.

This text will remain up to date for a long time since it has timeless examples and exercises, it wouldn't be outdated. The information is presented clearly with a simple way and the exercises are beneficial to follow the information.

The material is presented in a clear, concise manner. The text is easy readable for the first time statistics student.

The structure of the text is very consistent. Topics are presented with examples, followed by exercises. Problem sets are appropriate for the level of learner.

When the earlier matters need to be referenced, it is easy to find; no trouble reading the book and finding results, it has a consistent scheme. This book is set very well in sections.

The text presents the information in a logical order.

The learner can easily follow up the material; there is no interface problem.

There is no logic errors and incorrect explanations, a few typographical errors is just to be ignored.

Not applicable for this textbook.

Reviewed by Suhwon Lee, Associate Teaching Professor, University of Missouri on 6/19/18

This book is pretty comprehensive for being a brief introductory book. This book covers all necessary content areas for an introduction to Statistics course for non-math majors. The text book provides an effective index, plenty of exercises,... read more

This book is pretty comprehensive for being a brief introductory book. This book covers all necessary content areas for an introduction to Statistics course for non-math majors. The text book provides an effective index, plenty of exercises, review questions, and practice tests. It provides references and case studies. The glossary and index section is very helpful for students and can be used as a great resource.

Content appears to be accurate throughout. Being an introductory book, the book is unbiased and straight to the point. The terminology is standard.

The content in textbook is up to date. It will be very easy to update it or make changes at any point in time because of the well-structured contents in the textbook.

The author does a great job of explaining nearly every new term or concept. The book is easy to follow, clear and concise. The graphics are good to follow. The language in the book is easily understandable. I found most instructions in the book to be very detailed and clear for students to follow.

Overall consistency is good. It is consistent in terms of terminology and framework. The writing is straightforward and standardized throughout the text and it makes reading easier.

The authors do a great job of partitioning the text and labeling sections with appropriate headings. The table of contents is well organized and easily divisible into reading sections and it can be assigned at different points within the course.

Organization/Structure/Flow rating: 4

Overall, the topics are arranged in an order that follows natural progression in a statistics course with some exception. They are addressed logically and given adequate coverage.

The text is free of any issues. There are no navigation problems nor any display issues.

The text contains no grammatical errors.

The text is not culturally insensitive or offensive in any way most of time. Some examples might need to consider citing the sources or use differently to reflect current inclusive teaching strategies.

Overall, it's well-written and good recourse to be an introduction to statistical methods. Some materials may not need to be covered in an one-semester course. Various examples and quizzes can be a great recourse for instructor.

Reviewed by Jenna Kowalski, Mathematics Instructor, Anoka-Ramsey Community College on 3/27/18

The text includes the introductory statistics topics covered in a college-level semester course. An effective index and glossary are included, with functional hyperlinks. read more

The text includes the introductory statistics topics covered in a college-level semester course. An effective index and glossary are included, with functional hyperlinks.

Content Accuracy rating: 3

The content of this text is accurate and error-free, based on a random sampling of various pages throughout the text. Several examples included information without formal citation, leading the reader to potential bias and discrimination. These examples should be corrected to reflect current values of inclusive teaching.

The text contains relevant information that is current and will not become outdated in the near future. The statistical formulas and calculations have been used for centuries. The examples are direct applications of the formulas and accurately assess the conceptual knowledge of the reader.

The text is very clear and direct with the language used. The jargon does require a basic mathematical and/or statistical foundation to interpret, but this foundational requirement should be met with course prerequisites and placement testing. Graphs, tables, and visual displays are clearly labeled.

The terminology and framework of the text is consistent. The hyperlinks are working effectively, and the glossary is valuable. Each chapter contains modules that begin with prerequisite information and upcoming learning objectives for mastery.

The modules are clearly defined and can be used in conjunction with other modules, or individually to exemplify a choice topic. With the prerequisite information stated, the reader understands what prior mathematical understanding is required to successfully use the module.

The topics are presented well, but I recommend placing Sampling Distributions, Advanced Graphs, and Research Design ahead of Probability in the text. I think this rearranged version of the index would better align with current Introductory Statistics texts. The structure is very organized with the prerequisite information stated and upcoming learner outcomes highlighted. Each module is well-defined.

Adding an option of returning to the previous page would be of great value to the reader. While progressing through the text systematically, this is not an issue, but when the reader chooses to skip modules and read select pages then returning to the previous state of information is not easily accessible.

No grammatical errors were found while reviewing select pages of this text at random.

Cultural Relevance rating: 3

Several examples contained data that were not formally cited. These examples need to be corrected to reflect current inclusive teaching strategies. For example, one question stated that “while men are XX times more likely to commit murder than women, …” This data should be cited, otherwise the information can be interpreted as biased and offensive.

An included solutions manual for the exercises would be valuable to educators who choose to use this text.

Reviewed by Zaki Kuruppalil, Associate Professor, Ohio University on 2/1/18

This is a comprehensive book on statistical methods, its settings and most importantly the interpretation of the results. With the advent of computers and software’s, complex statistical analysis can be done very easily. But the challenge is the... read more

This is a comprehensive book on statistical methods, its settings and most importantly the interpretation of the results. With the advent of computers and software’s, complex statistical analysis can be done very easily. But the challenge is the knowledge of how to set the case, setting parameters (for example confidence intervals) and knowing its implication on the interpretation of the results. If not done properly this could lead to deceptive inferences, inadvertently or purposely. This book does a great job in explaining the above using many examples and real world case studies. If you are looking for a book to learn and apply statistical methods, this is a great one. I think the author could consider revising the title of the book to reflect the above, as it is more than just an introduction to statistics, may be include the word such as practical guide.

The contents of the book seems accurate. Some plots and calculations were randomly selected and checked for accuracy.

The book topics are up to date and in my opinion, will not be obsolete in the near future. I think the smartest thing the author has done is, not tied the book with any particular software such as minitab or spss . No matter what the software is, standard deviation is calculated the same way as it is always. The only noticeable exception in this case was using the Java Applet for calculating Z values in page 261 and in page 416 an excerpt of SPSS analysis is provided for ANOVA calculations.

The contents and examples cited are clear and explained in simple language. Data analysis and presentation of the results including mathematical calculations, graphical explanation using charts, tables, figures etc are presented with clarity.

Terminology is consistant. Framework for each chapter seems consistent with each chapter beginning with a set of defined topics, and each of the topic divided into modules with each module having a set of learning objectives and prerequisite chapters.

The text book is divided into chapters with each chapter further divided into modules. Each of the modules have detailed learning objectives and prerequisite required. So you can extract a portion of the book and use it as a standalone to teach certain topics or as a learning guide to apply a relevant topic.

Presentation of the topics are well thought and are presented in a logical fashion as if it would be introduced to someone who is learning the contents. However, there are some issues with table of contents and page numbers, for example chapter 17 starts in page 597 not 598. Also some tables and figures does not have a number, for instance the graph shown in page 114 does not have a number. Also it would have been better if the chapter number was included in table and figure identification, for example Figure 4-5 . Also in some cases, for instance page 109, the figures and titles are in two different pages.

No major issues. Only suggestion would be, since each chapter has several modules, any means such as a header to trace back where you are currently, would certainly help.

Grammatical Errors rating: 4

Easy to read and phrased correctly in most cases. Minor grammatical errors such as missing prepositions etc. In some cases the author seems to have the habbit of using a period after the decimal. For instance page 464, 467 etc. For X = 1, Y' = (0.425)(1) + 0.785 = 1.21. For X = 2, Y' = (0.425)(2) + 0.785 = 1.64.

However it contains some statements (even though given as examples) that could be perceived as subjective, which the author could consider citing the sources. For example from page 11: Statistics include numerical facts and figures. For instance: • The largest earthquake measured 9.2 on the Richter scale. • Men are at least 10 times more likely than women to commit murder. • One in every 8 South Africans is HIV positive. • By the year 2020, there will be 15 people aged 65 and over for every new baby born.

Solutions for the exercises would be a great teaching resource to have

Reviewed by Randy Vander Wal, Professor, The Pennsylvania State University on 2/1/18

As a text for an introductory course, standard topics are covered. It was nice to see some topics such as power, sampling, research design and distribution free methods covered, as these are often omitted in abbreviated texts. Each module... read more

As a text for an introductory course, standard topics are covered. It was nice to see some topics such as power, sampling, research design and distribution free methods covered, as these are often omitted in abbreviated texts. Each module introduces the topic, has appropriate graphics, illustration or worked example(s) as appropriate and concluding with many exercises. An instructor’s manual is available by contacting the author. A comprehensive glossary provides definitions for all the major terms and concepts. The case studies give examples of practical applications of statistical analyses. Many of the case studies contain the actual raw data. To note is that the on-line e-book provides several calculators for the essential distributions and tests. These are provided in lieu of printed tables which are not included in the pdf. (Such tables are readily available on the web.)

The content is accurate and error free. Notation is standard and terminology is used accurately, as are the videos and verbal explanations therein. Online links work properly as do all the calculators. The text appears neutral and unbiased in subject and content.

The text achieves contemporary relevance by ending each section with a Statistical Literacy example, drawn from contemporary headlines and issues. Of course, the core topics are time proven. There is no obvious material that may become “dated”.

The text is very readable. While the pdf text may appear “sparse” by absence varied colored and inset boxes, pictures etc., the essential illustrations and descriptions are provided. Meanwhile for this same content the on-line version appears streamlined, uncluttered, enhancing the value of the active links. Moreover, the videos provide nice short segments of “active” instruction that are clear and concise. Despite being a mathematical text, the text is not overly burdened by formulas and numbers but rather has “readable feel”.

This terminology and symbol use are consistent throughout the text and with common use in the field. The pdf text and online version are also consistent by content, but with the online e-book offering much greater functionality.

The chapters and topics may be used in a selective manner. Certain chapters have no pre-requisite chapter and in all cases, those required are listed at the beginning of each module. It would be straightforward to select portions of the text and reorganize as needed. The online version is highly modular offering students both ease of navigation and selection of topics.

Chapter topics are arranged appropriately. In an introductory statistics course, there is a logical flow given the buildup to the normal distribution, concept of sampling distributions, confidence intervals, hypothesis testing, regression and additional parametric and non-parametric tests. The normal distribution is central to an introductory course. Necessary precursor topics are covered in this text, while its use in significance and hypothesis testing follow, and thereafter more advanced topics, including multi-factor ANOVA.

Each chapter is structured with several modules, each beginning with pre-requisite chapter(s), learning objectives and concluding with Statistical Literacy sections providing a self-check question addressing the core concept, along with answer, followed by an extensive problem set. The clear and concise learning objectives will be of benefit to students and the course instructor. No solutions or answer key is provided to students. An instructor’s manual is available by request.

The on-line interface works well. In fact, I was pleasantly surprised by its options and functionality. The pdf appears somewhat sparse by comparison to publisher texts, lacking pictures, colored boxes, etc. But the on-line version has many active links providing definitions and graphic illustrations for key terms and topics. This can really facilitate learning as making such “refreshers” integral to the new material. Most sections also have short videos that are professionally done, with narration and smooth graphics. In this way, the text is interactive and flexible, offering varied tools for students. To note is that the interactive e-book works for both IOS and OS X.

The text in pdf form appeared to free of grammatical errors, as did the on-line version, text, graphics and videos.

This text contains no culturally insensitive or offensive content. The focus of the text is on concepts and explanation.

The text would be a great resource for students. The full content would be ambitious for a 1-semester course, such use would be unlikely. The text is clearly geared towards students with no statistics background nor calculus. The text could be used in two styles of course. For 1st year students early chapters on graphs and distributions would be the starting point, omitting later chapters on Chi-square, transformations, distribution-free and size effect chapters. Alternatively, for upper level students the introductory chapters could be bypassed with the latter chapters then covered to completion.

This text adopts a descriptive style of presentation with topics well and fully explained, much like the “Dummy series”. For this, it may seem a bit “wordy”, but this can well serve students and notably it complements powerpoint slides that are generally sparse on written content. This text could be used as the primary text, for regular lectures, or as reference for a “flipped” class. The e-book videos are an enabling tool if this approach is adopted.

Reviewed by David jabon, Associate Professor, DePaul University on 8/15/17

This text covers all the standard topics in a semester long introductory course in statistics. It is particularly well indexed and very easy to navigate. There is comprehensive hyperlinked glossary. read more

This text covers all the standard topics in a semester long introductory course in statistics. It is particularly well indexed and very easy to navigate. There is comprehensive hyperlinked glossary.

The material is completely accurate. There are no errors. The terminology is standard with one exception: the book calls what most people call the interquartile range, the H-spread in a number of places. Ideally, the term "interquartile range" would be used in place of every reference to "H-spread." "Interquartile range" is simply a better, more descriptive term of the concept that it describes. It is also more commonly used nowadays.

This book came out a number of years ago, but the material is still up to date. Some more recent case studies have been added.

The writing is very clear. There are also videos for almost every section. The section on boxplots uses a lot of technical terms that I don't find are very helpful for my students (hinge, H-spread, upper adjacent value).

The text is internally consistent with one exception that I noted (the use of the synonymous words "H-spread" and "interquartile range").

The text book is brokenly into very short sections, almost to a fault. Each section is at most two pages long. However at the end of each of these sections there are a few multiple choice questions to test yourself. These questions are a very appealing feature of the text.

The organization, in particular the ordering of the topics, is rather standard with a few exceptions. Boxplots are introduced in Chapter II before the discussion of measures of center and dispersion. Most books introduce them as part of discussion of summaries of data using measure of center and dispersion. Some statistics instructors may not like the way the text lumps all of the sampling distributions in a single chapter (sampling distribution of mean, sampling distribution for the difference of means, sampling distribution of a proportion, sampling distribution of r). I have tried this approach, and I now like this approach. But it is a very challenging chapter for students.

The book's interface has no features that distracted me. Overall the text is very clean and spare, with no additional distracting visual elements.

The book contains no grammatical errors.

The book's cultural relevance comes out in the case studies. As of this writing there are 33 such case studies, and they cover a wide range of issues from health to racial, ethnic, and gender disparity.

Each chapter as a nice set of exercises with selected answers. The thirty three case studies are excellent and can be supplement with some other online case studies. An instructor's manual and PowerPoint slides can be obtained by emailing the author. There are direct links to online simulations within the text. This text is very high quality textbook in every way.

Table of Contents

  • 1. Introduction
  • 2. Graphing Distributions
  • 3. Summarizing Distributions
  • 4. Describing Bivariate Data
  • 5. Probability
  • 6. Research Design
  • 7. Normal Distributions
  • 8. Advanced Graphs
  • 9. Sampling Distributions
  • 10. Estimation
  • 11. Logic of Hypothesis Testing
  • 12. Testing Means
  • 14. Regression
  • 15. Analysis of Variance
  • 16. Transformations
  • 17. Chi Square
  • 18. Distribution-Free Tests
  • 19. Effect Size
  • 20. Case Studies
  • 21. Glossary

Ancillary Material

  • Ancillary materials are available by contacting the author or publisher .

About the Book

Introduction to Statistics is a resource for learning and teaching introductory statistics. This work is in the public domain. Therefore, it can be copied and reproduced without limitation. However, we would appreciate a citation where possible. Please cite as: Online Statistics Education: A Multimedia Course of Study (http://onlinestatbook.com/). Project Leader: David M. Lane, Rice University. Instructor's manual, PowerPoint Slides, and additional questions are available.

About the Contributors

David Lane is an Associate Professor in the Departments of Psychology, Statistics, and Management at the Rice University. Lane is the principal developer of this resource although many others have made substantial contributions. This site was developed at Rice University, University of Houston-Clear Lake, and Tufts University.

Contribute to this Page

Assignment 4

Statistics Exercise Module 4 (1)

Thomas Edison State College *

Industrial Engineering

Feb 20, 2024

Uploaded by SuperHumanButterfly2575 on coursehero.com

  • Access to all documents
  • Unlimited textbook solutions
  • 24/7 expert homework help

IMAGES

  1. Statistical Analysis 1 Assignment 4.docx

    statistical analysis 1 assignment 4

  2. Assignment 1

    statistical analysis 1 assignment 4

  3. Types of statistical tools for data analysis

    statistical analysis 1 assignment 4

  4. PPT

    statistical analysis 1 assignment 4

  5. Assignment 4: Statistical Analyses

    statistical analysis 1 assignment 4

  6. Statistics Assignment Examples : Introduction

    statistical analysis 1 assignment 4

VIDEO

  1. Shot 4 Sequence 1 (Assignment 4, TV News Basics)

  2. Statistical analysis of data question 2 and 3

  3. Managerial Accounting Chapter 1 Assignment #4

  4. The Statistical Analysis Process

  5. 02

  6. M130 chapter 1 INTRODUCTION TO STATISTICS AND DATA ANALYSIS

COMMENTS

  1. MA 260 : Statistical Analysis I

    Statistical Analysis 1 Assignment 4.docx. Statistical Analysis 1 MA260 Assignment #04 1) In families with four children, you're interested in the probabilities for the different possible numbers of girls in a family. Using theoretical probability (assume girls and boys are equally likely), compil.

  2. MA260 Week 3 module 4 mini study 1 staistics

    Statistical Analysis I (MA260) University Ashworth College. Academic year: 2021/2022. Uploaded by: ... Assignment 8 Curriculum Development; Assignment 4 Curriculum Development; APA 7 Template Word Doc - N/A; English composition 5 - N/A; English Composition LL Assignment 04; English Composition LL Assignment 07 ... Statistics Worksheet Part-1 ...

  3. Statistical Analysis 1 Assignment 4.docx

    View Homework Help - Statistical Analysis 1 Assignment 4.docx from MA 260 at Ashworth College. Statistical Analysis 1 MA260 Assignment #04 1) In families with four children, you're interested in the

  4. Statistical Analysis Assignment 4.docx

    View Homework Help - Statistical Analysis _Assignment 4.docx from MA 260 at Ashworth College. Sherry Cormack AC1704345 MA260: Statistical Analysis I Assignment 4 February 23, ... Assignment 4 - Statistical Analysis 1- Kristin Greaux.docx. Solutions Available. Ashworth College. MA 260. Statistical analysis assignment 4.docx. Solutions Available.

  5. Chapter 4 Homework

    Intro to Statistical Analysis (MAT-133) 510 Documents. Students shared 510 documents in this course. University Southern New Hampshire University. Academic year: 2020/2021. ... 3 1 smartbook assignment Chapter 4.docx; Related documents. 3 2 chp - smartbook assignment; 7-2 Final Project Submission Research Study Report; Chapter 7 Homework;

  6. MA260

    Follow this course Trending 3 MA260 Week 3 module 4 mini study 1 staistics Assignments 86% (7) Assignments Date year Ratings Related Answered Questions Statistical Analysis I (MA260) 3 months ago

  7. Statistical Analysis Chapter 1-4 Flashcards

    Test Match Q-Chat Jerilyn03 Top creator on Quizlet Terms in this set (117) Statistics The art and science of collecting, analyzing, presenting, and interpreting data. Way to get information from data. Takes a lot factors and minimizes them so we can make sense of it. Data

  8. The Beginner's Guide to Statistical Analysis

    Step 1: Write your hypotheses and plan your research design Step 2: Collect data from a sample Step 3: Summarize your data with descriptive statistics Step 4: Test hypotheses or make estimates with inferential statistics Step 5: Interpret your results Other interesting articles Step 1: Write your hypotheses and plan your research design

  9. Solved ASSIGNMENT 08 MA260 Statistical Analysis I

    Step 1 Given that, View the full answer Step 2 Unlock Answer Unlock Previous question Next question Transcribed image text: ASSIGNMENT 08 MA260 Statistical Analysis I Directions: Be sure to save an electronic copy of your answer before submitting it to Ashworth College for grading.

  10. Introduction to Statistics

    Relevance/Longevity rating: 4 The statistical literacy example are up to date but will need to be updated fairly regularly to keep the textbook fresh. The applications within the chapter are accessible and can be used fairly easily over a couple of editions. ... With the advent of computers and software's, complex statistical analysis can be ...

  11. Solved MA260 Statistical Analysis 1, my assignment is to

    Math Statistics and Probability Statistics and Probability questions and answers MA260 Statistical Analysis 1, my assignment is to perform a survey, population 100, sample of 50, my choice was medication adherance. I asked 4 questions. 1. Do you take more than 4 meds? 42 answered yes. 2. Do you take meds more than once a day? 35 answered yes. 3.

  12. Statistical Analysis 1

    View Statistical Analysis 1 - Module 4.docx from MA 260 at Strayer University. Bianca Maduro AC1507967 Statistical Analysis 1(MA260) Assignment 4 January 23, 2020 1. In families with four children,

  13. Statistics Assignment

    Statistics Assignment - 4 | PDF | Statistical Analysis | Teaching Mathematics. Statistics assignment -4 - Read online for free.

  14. Statistical Analysis

    Statistical Analysis - Assignment 4 | STAT 601, Assignments for Statistics 20 points Texas A&M University (A&M) Statistics 5 Pages Pre 2010 Description: Material Type: Assignment; Class: STATISTICAL ANALYSIS; Subject: STATISTICS; University: Texas A&M University; Term: Unknown 1989; Show more Preview the document Uploaded on 02/13/2009

  15. 4-1 Smart Book Assignment- Chapter 5 (Sections 5.1 through 5

    Intro to Statistical Analysis (MAT-133) 501 Documents. Students shared 501 documents in this course. University Southern New Hampshire University. Academic year: 2022/2023. Uploaded by: Anonymous Student. ... 4-1 SmartBook Assignment: Chapter 5 (Sections 5 through 5)

  16. Exploring Machine Learning Techniques in Statistical Analysis

    Computer-science document from University of Southern California, 4 pages, Introduction: This assignment focuses on integrating machine learning techniques into statistical analysis, bridging traditional statistical methods with modern data-driven approaches. Students will explore various machine learning algorithms, their appli

  17. Statistical analysis assignment 4.docx

    3 10/27/2019 1 Assignment 4 Joseph Cowan AC1903336 Statistical Analysis (MA260) Lesson 4, Assignment 04 September 26, 2019 1. 0 1. 2. 3. 4. BBBB BBBG BBGG BGGG GGGG GGGB GGBB GBBB GBGB BGBG GBBG BGGB a. Probability of 1 girl P (1 girl) = No. of outcomes with 1 girl Total no. of outcomes = 1 ≈0.083 12 b.

  18. Assignment 4 (pdf)

    Statistics document from National University of Singapore, 1 page, DAO1704 Assignment 4 Due Date: 17 October 2023, 11:59PM. Note: 1. The assignment is graded and will contribute to your CA and final marks of the module. ... Conduct a sensitivity analysis on the chance that the selected field actually contains oil.

  19. Mat133 3 4Homework Ch4.pdf

    Mat133 3 4 Homework Chapter 4 Assignment. 7-2 Final Project Submission Research Study Report. 2-2 Final Project Milestone One Introduction and Peer Review. 2-2 Final Project Milestone 1. smartbook assignment chapter4 daus the market are the 2b most recent home sales the uty of sonandy hills. 30 58 47 142 12 78 tt 113 146 aq a1 77 36 180 vi 148.

  20. Assignment #1: Statistics Data Analysis Plan

    The purpose of this assignment is to provide experience developing and executing a descriptive statistics analysis plan using real world data to answer a practical question. Note: This first assignment develops and executes a preliminary plan using a subset of the data to create tables and graphs to address the assigned task.

  21. 3-1 Smart book Assignment Chapter 4 (sections 4.1

    3-1 Smart book Assignment Chapter 4 (sections 4.1 - 4.5) 4 pgs with 44 included smart book assignment chapter (sections numbers that summarize sample of data re. ... Intro to Statistical Analysis (MAT-133) 461 Documents. Students shared 461 documents in this course. Academic year: 2022/2023.

  22. Assignment 4 Statistical Analysis.docx

    50% (4) View full document Was this helpful? Assignment Instructions Mini- Study Part I In this course you will conduct a mini study. You will survey 50 people through any method you choose to find out information on your topic. You will then calculate the statistics for your data.

  23. Statistics Exercise Module 4 (1).docx

    IE 7361 Statistics Exercise Module 4 JMP Data Tables This exercise focuses on setting up tables of data, which is the first step to performing statistical analysis. Module 5 contains an assignment analyzing data with JMP, and this exercise will be used to set up the tables needed to complete that assignment. This exercise covers the following module 4 objectives:-Set up data collection tables ...

  24. MAT-133 module 4-3 milestone two submission- Analysis

    3 1 smartbook assignment Chapter 4.docx. Intro to Statistical Analysis 100% (3) Preview text. ... Couple Relationships During Reentry" Terri Donald MAT- 23EW1 Intro to Statistical Analysis Dr. Haj September 24, 2024. I. Analyze the Research Methods of the Study. Researchers used a mixed-methods approach, combining quantitative and qualitative ...

  25. Assignment 7

    MA MA 260 ChefResolve1431 5/4/2022 88% (8) View full document The document discusses the economic impact of the Covid-19 pandemic on the United States, particularly in terms of unemployment. It includes survey data on the ages of those affected and provides statistical analysis on the data.

  26. 3 1 smartbook assignment Chapter 4.docx

    3 1 smartbook assignment Chapter 4.docx. smartbook assignment. Course. Intro to Statistical Analysis (MAT-133) 510 Documents. Students shared 510 documents in this course. University Southern New Hampshire University. ... 4-1 Discussion post; Screen Shot 2023-11-30 at 9.38.05 PM;