Research Paper Guide

Research Paper Example

Nova A.

Research Paper Examples - Free Sample Papers for Different Formats!

Published on: Nov 27, 2017

Last updated on: Jan 11, 2024

Research Paper Example

People also read

Research Paper Writing - A Step by Step Guide

Guide to Creating Effective Research Paper Outline

Interesting Research Paper Topics for 2024

Research Proposal Writing - A Step-by-Step Guide

How to Start a Research Paper - 7 Easy Steps

How to Write an Abstract for a Research Paper - A Step by Step Guide

Writing a Literature Review For a Research Paper - A Comprehensive Guide

Qualitative Research - Methods, Types, and Examples

8 Types of Qualitative Research - Overview & Examples

Qualitative vs Quantitative Research - Learning the Basics

Psychology Research Topics - 220+ Ideas

How to Write a Hypothesis In 7 simple Steps: Examples and Tips!

20+ Types of Research With Examples - A Detailed Guide

Understanding Quantitative Research - Types & Data Collection Techniques

230+ Sociology Research Topics & Ideas for Students

How to Cite a Research Paper - A Complete Guide

Excellent History Research Paper Topics- 300+ Ideas

A Guide on Writing the Method Section of a Research Paper - Examples & Tips

How To Write an Introduction Paragraph For a Research Paper: Learn with Examples

Crafting a Winning Research Paper Title: A Complete Guide

Writing a Research Paper Conclusion - Step-by-Step Guide

Writing a Thesis For a Research Paper - A Comprehensive Guide

How To Write A Discussion For A Research Paper | Examples & Tips

How To Write The Results Section of A Research Paper | Steps & Examples

Writing a Problem Statement for a Research Paper - A Comprehensive Guide

Finding Sources For a Research Paper: A Complete Guide

Share this article

Crafting a comprehensive research paper can be daunting. Understanding diverse citation styles and various subject areas presents a challenge for many.

Without clear examples, students often feel lost and overwhelmed, unsure of how to start or which style fits their subject.

Explore our collection of expertly written research paper examples. We’ve covered various citation styles and a diverse range of subjects.

So, read on!

On This Page On This Page -->

Research Paper Example for Different Formats

Following a specific formatting style is essential while writing a research paper . Knowing the conventions and guidelines for each format can help you in creating a perfect paper. Here we have gathered examples of research paper for most commonly applied citation styles :

Social Media and Social Media Marketing: A Literature Review

APA Research Paper Example

APA (American Psychological Association) style is commonly used in social sciences, psychology, and education. This format is recognized for its clear and concise writing, emphasis on proper citations, and orderly presentation of ideas.

Here are some research paper examples in APA style:

Research Paper Example APA 7th Edition

Research Paper Example MLA

MLA (Modern Language Association) style is frequently employed in humanities disciplines, including literature, languages, and cultural studies. An MLA research paper might explore literature analysis, linguistic studies, or historical research within the humanities. 

Here is an example:

Found Voices: Carl Sagan

Research Paper Example Chicago

Chicago style is utilized in various fields like history, arts, and social sciences. Research papers in Chicago style could delve into historical events, artistic analyses, or social science inquiries. 

Here is a research paper formatted in Chicago style:

Chicago Research Paper Sample

Research Paper Example Harvard

Harvard style is widely used in business, management, and some social sciences. Research papers in Harvard style might address business strategies, case studies, or social policies.

View this sample Harvard style paper here:

Harvard Research Paper Sample

Examples for Different Research Paper Parts

A research paper has different parts. Each part is important for the overall success of the paper. Chapters in a research paper must be written correctly, using a certain format and structure.

The following are examples of how different sections of the research paper can be written.

Research Proposal

The research proposal acts as a detailed plan or roadmap for your study, outlining the focus of your research and its significance. It's essential as it not only guides your research but also persuades others about the value of your study.

Example of Research Proposal

An abstract serves as a concise overview of your entire research paper. It provides a quick insight into the main elements of your study. It summarizes your research's purpose, methods, findings, and conclusions in a brief format.

Research Paper Example Abstract

Literature Review 

A literature review summarizes the existing research on your study's topic, showcasing what has already been explored. This section adds credibility to your own research by analyzing and summarizing prior studies related to your topic.

Literature Review Research Paper Example

Methodology

The methodology section functions as a detailed explanation of how you conducted your research. This part covers the tools, techniques, and steps used to collect and analyze data for your study.

Methods Section of Research Paper Example

How to Write the Methods Section of a Research Paper

The conclusion summarizes your findings, their significance and the impact of your research. This section outlines the key takeaways and the broader implications of your study's results.

Research Paper Conclusion Example

Research Paper Examples for Different Fields

Research papers can be about any subject that needs a detailed study. The following examples show research papers for different subjects.

History Research Paper Sample

Preparing a history research paper involves investigating and presenting information about past events. This may include exploring perspectives, analyzing sources, and constructing a narrative that explains the significance of historical events.

View this history research paper sample:

Many Faces of Generalissimo Fransisco Franco

Sociology Research Paper Sample

In sociology research, statistics and data are harnessed to explore societal issues within a particular region or group. These findings are thoroughly analyzed to gain an understanding of the structure and dynamics present within these communities. 

Here is a sample:

A Descriptive Statistical Analysis within the State of Virginia

Science Fair Research Paper Sample

A science research paper involves explaining a scientific experiment or project. It includes outlining the purpose, procedures, observations, and results of the experiment in a clear, logical manner.

Here are some examples:

Science Fair Paper Format

What Do I Need To Do For The Science Fair?

Psychology Research Paper Sample

Writing a psychology research paper involves studying human behavior and mental processes. This process includes conducting experiments, gathering data, and analyzing results to understand the human mind, emotions, and behavior.

Here is an example psychology paper:

The Effects of Food Deprivation on Concentration and Perseverance

Art History Research Paper Sample

Studying art history includes examining artworks, understanding their historical context, and learning about the artists. This helps analyze and interpret how art has evolved over various periods and regions.

Check out this sample paper analyzing European art and impacts:

European Art History: A Primer

Research Paper Example Outline

Before you plan on writing a well-researched paper, make a rough draft. An outline can be a great help when it comes to organizing vast amounts of research material for your paper.

Here is an outline of a research paper example:

Here is a downloadable sample of a standard research paper outline:

Research Paper Outline

Want to create the perfect outline for your paper? Check out this in-depth guide on creating a research paper outline for a structured paper!

Good Research Paper Examples for Students

Here are some more samples of research paper for students to learn from:

Fiscal Research Center - Action Plan

Qualitative Research Paper Example

Research Paper Example Introduction

How to Write a Research Paper Example

Research Paper Example for High School

Now that you have explored the research paper examples, you can start working on your research project. Hopefully, these examples will help you understand the writing process for a research paper.

If you're facing challenges with your writing requirements, you can hire our essay writing service .

Our team is experienced in delivering perfectly formatted, 100% original research papers. So, whether you need help with a part of research or an entire paper, our experts are here to deliver.

So, why miss out? Place your ‘ write my research paper ’ request today and get a top-quality research paper!

Nova A. (Literature, Marketing)

Nova Allison is a Digital Content Strategist with over eight years of experience. Nova has also worked as a technical and scientific writer. She is majorly involved in developing and reviewing online content plans that engage and resonate with audiences. Nova has a passion for writing that engages and informs her readers.

Paper Due? Why Suffer? That’s our Job!

Get Help

Keep reading

Research Paper Example

We value your privacy

We use cookies to improve your experience and give you personalized content. Do you agree to our cookie policy?

Website Data Collection

We use data collected by cookies and JavaScript libraries.

Are you sure you want to cancel?

Your preferences have not been saved.

How To Write A Research Paper

Research Paper Example

Nova A.

Research Paper Example - Examples for Different Formats

Published on: Jun 12, 2021

Last updated on: Feb 6, 2024

research paper examples

People also read

How to Write a Research Paper Step by Step

Learn How to Write a Research Proposal

A Comprehensive Guide to Creating a Research Paper Outline

Types of Research - Methodologies and Characteristics

300+ Engaging Research Paper Topics to Get You Started

Interesting Psychology Research Topics & Ideas

Qualitative Research - Types, Methods & Examples

Understanding Quantitative Research - Definition, Types, Examples, And More

How To Start A Research Paper - Steps With Examples

How to Write an Abstract That Captivates Your Readers

Learn How to Write a Literature Review for a Research Paper

Types of Qualitative Research Methods - An Overview

Understanding Qualitative vs. Quantitative Research - A Complete Guide

How to Cite a Research Paper in Different Citation Formats

Easy Sociology Research Topics for Your Next Project

200+ Outstanding History Research Paper Topics With Expert Tips

How to Write a Hypothesis for a Research Paper

How to Write an Introduction for a Research Paper - A Step-by-Step Guide

How to Write a Good Research Paper Title

How to Write a Conclusion for a Research Paper in 3 Simple Steps

How to Write an Abstract For a Research Paper with Examples

Share this article

Writing a research paper is the most challenging task in a student's academic life. researchers face similar writing process hardships, whether the research paper is to be written for graduate or masters.

A research paper is a writing type in which a detailed analysis, interpretation, and evaluation are made on the topic. It requires not only time but also effort and skills to be drafted correctly.

If you are working on your research paper for the first time, here is a collection of examples that you will need to understand the paper’s format and how its different parts are drafted. Continue reading the article to get free research paper examples.

On This Page On This Page -->

Research Paper Example for Different Formats

A research paper typically consists of several key parts, including an introduction, literature review, methodology, results, and annotated bibliography .

When writing a research paper (whether quantitative research or qualitative research ), it is essential to know which format to use to structure your content. Depending on the requirements of the institution, there are mainly four format styles in which a writer drafts a research paper:

Let’s look into each format in detail to understand the fundamental differences and similarities.

Research Paper Example APA

If your instructor asks you to provide a research paper in an APA format, go through the example given below and understand the basic structure. Make sure to follow the format throughout the paper.

APA Research Paper Sample (PDF)

Research Paper Example MLA

Another widespread research paper format is MLA. A few institutes require this format style as well for your research paper. Look at the example provided of this format style to learn the basics.

MLA Research Paper Sample (PDF)

Research Paper Example Chicago

Unlike MLA and APA styles, Chicago is not very common. Very few institutions require this formatting style research paper, but it is essential to learn it. Look at the example given below to understand the formatting of the content and citations in the research paper.

Chicago Research Paper Sample (PDF)

Research Paper Example Harvard

Learn how a research paper through Harvard formatting style is written through this example. Carefully examine how the cover page and other pages are structured.

Harvard Research Paper Sample (PDF)

Examples for Different Research Paper Parts

A research paper is based on different parts. Each part plays a significant role in the overall success of the paper. So each chapter of the paper must be drafted correctly according to a format and structure.

Below are examples of how different sections of the research paper are drafted.

Research Proposal Example

A research proposal is a plan that describes what you will investigate, its significance, and how you will conduct the study.

Research Proposal Sample (PDF)

Abstract Research Paper Example

An abstract is an executive summary of the research paper that includes the purpose of the research, the design of the study, and significant research findings.

It is a small section that is based on a few paragraphs. Following is an example of the abstract to help you draft yours professionally.

Abstract Research Paper Sample (PDF)

Literature Review Research Paper Example

A literature review in a research paper is a comprehensive summary of the previous research on your topic. It studies sources like books, articles, journals, and papers on the relevant research problem to form the basis of the new research.

Writing this section of the research paper perfectly is as important as any part of it.

Literature Review in Research Sample (PDF)

Methods Section of Research Paper Example

The method section comes after the introduction of the research paper that presents the process of collecting data. Basically, in this section, a researcher presents the details of how your research was conducted.

Methods Section in Research Sample (PDF)

Research Paper Conclusion Example

The conclusion is the last part of your research paper that sums up the writer’s discussion for the audience and leaves an impression. This is how it should be drafted:

Research Paper Conclusion Sample (PDF)

Research Paper Examples for Different Fields

The research papers are not limited to a particular field. They can be written for any discipline or subject that needs a detailed study.

In the following section, various research paper examples are given to show how they are drafted for different subjects.

Science Research Paper Example

Are you a science student that has to conduct research? Here is an example for you to draft a compelling research paper for the field of science.

Science Research Paper Sample (PDF)

History Research Paper Example

Conducting research and drafting a paper is not only bound to science subjects. Other subjects like history and arts require a research paper to be written as well. Observe how research papers related to history are drafted.

History Research Paper Sample (PDF)

Psychology Research Paper Example

If you are a psychology student, look into the example provided in the research paper to help you draft yours professionally.

Psychology Research Paper Sample (PDF)

Research Paper Example for Different Levels

Writing a research paper is based on a list of elements. If the writer is not aware of the basic elements, the process of writing the paper will become daunting. Start writing your research paper taking the following steps:

  • Choose a topic
  • Form a strong thesis statement
  • Conduct research
  • Develop a research paper outline

Once you have a plan in your hand, the actual writing procedure will become a piece of cake for you.

No matter which level you are writing a research paper for, it has to be well structured and written to guarantee you better grades.

If you are a college or a high school student, the examples in the following section will be of great help.

Research Paper Outline (PDF)

Research Paper Example for College

Pay attention to the research paper example provided below. If you are a college student, this sample will help you understand how a winning paper is written.

College Research Paper Sample (PDF)

Research Paper Example for High School

Expert writers of CollegeEssay.org have provided an excellent example of a research paper for high school students. If you are struggling to draft an exceptional paper, go through the example provided.

High School Research Paper Sample (PDF)

Examples are essential when it comes to academic assignments. If you are a student and aim to achieve good grades in your assignments, it is suggested to get help from  CollegeEssay.org .

We are the best writing company that delivers essay help for students by providing free samples and writing assistance.

Professional writers have your back, whether you are looking for guidance in writing a lab report, college essay, or research paper.

Simply hire a writer by placing your order at the most reasonable price. You can also take advantage of our essay writer to enhance your writing skills.

Nova A. (Literature, Marketing)

As a Digital Content Strategist, Nova Allison has eight years of experience in writing both technical and scientific content. With a focus on developing online content plans that engage audiences, Nova strives to write pieces that are not only informative but captivating as well.

Paper Due? Why Suffer? That’s our Job!

Get Help

Keep reading

research paper examples

  • Privacy Policy
  • Cookies Policy
  • Terms of Use
  • Refunds & Cancellations
  • Our Writers
  • Success Stories
  • Our Guarantees
  • Affiliate Program
  • Referral Program
  • AI Essay Writer

Disclaimer: All client orders are completed by our team of highly qualified human writers. The essays and papers provided by us are not to be used for submission but rather as learning models only.

paper research example

Research Paper Examples

Academic Writing Service

Research paper examples are of great value for students who want to complete their assignments timely and efficiently. If you are a student in the university, your first stop in the quest for research paper examples will be the campus library where you can get to view the research sample papers of lecturers and other professionals in diverse fields plus those of fellow students who preceded you in the campus. Many college departments maintain libraries of previous student work, including large research papers, which current students can examine. Our collection of research paper examples includes:

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code, browse sample research papers, anthropology research paper examples.

  • Archaeology Research Paper
  • Forensic Anthropology Research Paper
  • Linguistics Research Paper
  • Medical Anthropology Research Paper
  • Social Problems Research Paper

Art Research Paper Examples

  • Performing Arts Research Paper
  • Music Research Paper
  • Architecture Research Paper
  • Theater Research Paper
  • Visual Arts Research Paper

Cancer Research Paper Examples

  • Breast Cancer Research Paper
  • Leukemia Research Paper
  • Lung Cancer Research Paper
  • Ovarian Cancer Research Paper
  • Prostate Cancer Research Paper

Communication Research Paper Examples

  • Advertising Research Paper
  • Journalism Research Paper
  • Media Research Paper
  • Public Relations Research Paper
  • Public Speaking Research Paper

Crime Research Paper Examples

  • Computer Crime Research Paper
  • Domestic Violence Research Paper
  • Hate Crimes Research Paper
  • Organized Crime Research Paper
  • White-Collar Crime Research Paper

Criminal Justice Research Paper Examples

  • Capital Punishment Research Paper
  • Community Policing Research Paper
  • Corporal Punishment Research Paper
  • Criminal Investigation Research Paper
  • Criminal Justice System Research Paper
  • Plea Bargaining Research Paper
  • Restorative Justice Research Paper

Criminal Law Research Paper Examples

  • Actus Reus Research Paper
  • Gun Control Research Paper
  • Insanity Defense Research Paper
  • International Criminal Law Research Paper
  • Self-Defense Research Paper

Criminology Research Paper Examples

  • Cultural Criminology Research Paper
  • Education and Crime Research Paper
  • Marxist Criminology Research Paper
  • School Crime Research Paper
  • Urban Crime Research Paper

Culture Research Paper Examples

  • Advertising and Culture Research Paper
  • Material Culture Research Paper
  • Popular Culture Research Paper
  • Cross-Cultural Studies Research Paper
  • Culture Change Research Paper

Economics Research Paper Examples

  • Budget Research Paper
  • Cost-Benefit Analysis Research Paper
  • Fiscal Policy Research Paper
  • Labor Market Research Paper

Education Research Paper Examples

  • Early Childhood Education Research Paper
  • Information Processing Research Paper
  • Multicultural Education Research Paper
  • Special Education Research Paper
  • Standardized Tests Research Paper

Health Research Paper Examples

  • AIDS Research Paper
  • Alcoholism Research Paper
  • Disease Research Paper
  • Health Economics Research Paper
  • Health Insurance Research Paper
  • Nursing Research Paper

History Research Paper Examples

  • Adolf Hitler Research Paper
  • American Revolution Research Paper
  • Ancient Greece Research Paper
  • Apartheid Research Paper
  • Christopher Columbus Research Paper
  • Climate Change Research Paper
  • Cold War Research Paper
  • Columbian Exchange Research Paper
  • Deforestation Research Paper
  • Diseases Research Paper
  • Earthquakes Research Paper
  • Egypt Research Paper

Leadership Research Paper Examples

  • Implicit Leadership Theories Research Paper
  • Judicial Leadership Research Paper
  • Leadership Styles Research Paper
  • Police Leadership Research Paper
  • Political Leadership Research Paper
  • Remote Leadership Research Paper

Mental Health Research Paper Examples

  • ADHD Research Paper
  • Anxiety Research Paper
  • Autism Research Paper
  • Depression Research Paper
  • Eating Disorders Research Paper
  • PTSD Research Paper
  • Schizophrenia Research Paper
  • Stress Research Paper

Political Science Research Paper Examples

  • American Government Research Paper
  • Civil War Research Paper
  • Communism Research Paper
  • Democracy Research Paper
  • Game Theory Research Paper
  • Human Rights Research Paper
  • International Relations Research Paper
  • Terrorism Research Paper

Psychology Research Paper Examples

  • Artificial Intelligence Research Paper
  • Assessment Psychology Research Paper
  • Biological Psychology Research Paper
  • Clinical Psychology Research Paper
  • Developmental Psychology Research Paper
  • Discrimination Research Paper
  • Educational Psychology Research Paper
  • Environmental Psychology Research Paper
  • Experimental Psychology Research Paper
  • Intelligence Research Paper
  • Learning Disabilities Research Paper
  • Personality Psychology Research Paper
  • Psychiatry Research Paper
  • Psychotherapy Research Paper
  • Social Cognition Research Paper
  • Social Psychology Research Paper

Sociology Research Paper Examples

  • Family Research Paper
  • Demography Research Paper
  • Group Dynamics Research Paper
  • Quality of Life Research Paper
  • Social Change Research Paper
  • Social Movements Research Paper
  • Social Networks Research Paper

Technology Research Paper Examples

  • Computer Forensics Research Paper
  • Genetic Engineering Research Paper
  • History of Technology Research Paper
  • Internet Research Paper
  • Nanotechnology Research Paper

paper research example

Other Research Paper Examples

  • Abortion Research Paper
  • Adoption Research Paper
  • Animal Testing Research Paper
  • Bullying Research Paper
  • Diversity Research Paper
  • Divorce Research Paper
  • Drugs Research Paper
  • Environmental Issues Research Paper
  • Ethics Research Paper
  • Evolution Research Paper
  • Feminism Research Paper
  • Food Research Paper
  • Gender Research Paper
  • Globalization Research Paper
  • Juvenile Justice Research Paper
  • Law Research Paper
  • Management Research Paper
  • Philosophy Research Paper
  • Public Health Research Paper
  • Religion Research Paper
  • Science Research Paper
  • Social Sciences Research Paper
  • Statistics Research Paper
  • Other Sample Research Papers

To Read Examples or Not to Read

When you get an assignment to write a research paper, the first question you ask yourself is ‘Should I look for research paper examples?’ Maybe, I can deal with this task on my own without any help. Is it that difficult?

Thousands of students turn to our service every day for help. It does not mean that they cannot do their assignments on their own. They can, but the reason is different. Writing a research paper demands so much time and energy that asking for assistance seems to be a perfect solution. As the matter of fact, it is a perfect solution, especially, when you need to work to pay for your studying as well.

Firstly, if you search for research paper examples before you start writing, you can save your time significantly. You look at the example and you understand the gist of your assignment within several minutes. Secondly, when you examine some sample paper, you get to know all the requirements. You analyze the structure, the language, and the formatting details. Finally, reading examples helps students to overcome writer’s block, as other people’s ideas can motivate you to discover your own ideas.

A Sample Research Paper on Child Abuse

Research Paper Examples

A research paper is an academic piece of writing, so you need to follow all the requirements and standards. Otherwise, it will be impossible to get the high results. To make it easier for you, we have analyzed the structure and peculiarities of a sample research paper on the topic ‘Child Abuse’.

The paper includes 7300+ words, a detailed outline, citations are in APA formatting style, and bibliography with 28 sources.

To write any paper you need to write a great outline. This is the key to a perfect paper. When you organize your paper, it is easier for you to present the ideas logically, without jumping from one thought to another.

In the outline, you need to name all the parts of your paper. That is to say, an introduction, main body, conclusion, bibliography, some papers require abstract and proposal as well.

A good outline will serve as a guide through your paper making it easier for the reader to follow your ideas.

I. Introduction

Ii. estimates of child abuse: methodological limitations, iii. child abuse and neglect: the legalities, iv. corporal punishment versus child abuse, v. child abuse victims: the patterns, vi. child abuse perpetrators: the patterns, vii. explanations for child abuse, viii. consequences of child abuse and neglect, ix. determining abuse: how to tell whether a child is abused or neglected, x. determining abuse: interviewing children, xi. how can society help abused children and abusive families, introduction.

An introduction should include a thesis statement and the main points that you will discuss in the paper.

A thesis statement is one sentence in which you need to show your point of view. You will then develop this point of view through the whole piece of work:

‘The impact of child abuse affects more than one’s childhood, as the psychological and physical injuries often extend well into adulthood.’

Child abuse is a very real and prominent social problem today. The impact of child abuse affects more than one’s childhood, as the psychological and physical injuries often extend well into adulthood. Most children are defenseless against abuse, are dependent on their caretakers, and are unable to protect themselves from these acts.

Childhood serves as the basis for growth, development, and socialization. Throughout adolescence, children are taught how to become productive and positive, functioning members of society. Much of the socializing of children, particularly in their very earliest years, comes at the hands of family members. Unfortunately, the messages conveyed to and the actions against children by their families are not always the positive building blocks for which one would hope.

In 2008, the Children’s Defense Fund reported that each day in America, 2,421 children are confirmed as abused or neglected, 4 children are killed by abuse or neglect, and 78 babies die before their first birthday. These daily estimates translate into tremendous national figures. In 2006, caseworkers substantiated an estimated 905,000 reports of child abuse or neglect. Of these, 64% suffered neglect, 16% were physically abused, 9% were sexually abused, 7% were emotionally or psychologically maltreated, and 2% were medically neglected. In addition, 15% of the victims experienced “other” types of maltreatment such as abandonment, threats of harm to the child, and congenital drug addiction (National Child Abuse and Neglect Data System, 2006). Obviously, this problem is a substantial one.

In the main body, you dwell upon the topic of your paper. You provide your ideas and support them with evidence. The evidence include all the data and material you have found, analyzed and systematized. You can support your point of view with different statistical data, with surveys, and the results of different experiments. Your task is to show that your idea is right, and make the reader interested in the topic.

In this example, a writer analyzes the issue of child abuse: different statistical data, controversies regarding the topic, examples of the problem and the consequences.

Several issues arise when considering the amount of child abuse that occurs annually in the United States. Child abuse is very hard to estimate because much (or most) of it is not reported. Children who are abused are unlikely to report their victimization because they may not know any better, they still love their abusers and do not want to see them taken away (or do not themselves want to be taken away from their abusers), they have been threatened into not reporting, or they do not know to whom they should report their victimizations. Still further, children may report their abuse only to find the person to whom they report does not believe them or take any action on their behalf. Continuing to muddy the waters, child abuse can be disguised as legitimate injury, particularly because young children are often somewhat uncoordinated and are still learning to accomplish physical tasks, may not know their physical limitations, and are often legitimately injured during regular play. In the end, children rarely report child abuse; most often it is an adult who makes a report based on suspicion (e.g., teacher, counselor, doctor, etc.).

Even when child abuse is reported, social service agents and investigators may not follow up or substantiate reports for a variety of reasons. Parents can pretend, lie, or cover up injuries or stories of how injuries occurred when social service agents come to investigate. Further, there is not always agreement about what should be counted as abuse by service providers and researchers. In addition, social service agencies/agents have huge caseloads and may only be able to deal with the most serious forms of child abuse, leaving the more “minor” forms of abuse unsupervised and unmanaged (and uncounted in the statistical totals).

While most laws about child abuse and neglect fall at the state levels, federal legislation provides a foundation for states by identifying a minimum set of acts and behaviors that define child abuse and neglect. The Federal Child Abuse Prevention and Treatment Act (CAPTA), which stems from the Keeping Children and Families Safe Act of 2003, defines child abuse and neglect as, at minimum, “(1) any recent act or failure to act on the part of a parent or caretaker which results in death, serious physical or emotional harm, sexual abuse, or exploitation; or (2) an act or failure to act which presents an imminent risk or serious harm.”

Using these minimum standards, each state is responsible for providing its own definition of maltreatment within civil and criminal statutes. When defining types of child abuse, many states incorporate similar elements and definitions into their legal statutes. For example, neglect is often defined as failure to provide for a child’s basic needs. Neglect can encompass physical elements (e.g., failure to provide necessary food or shelter, or lack of appropriate supervision), medical elements (e.g., failure to provide necessary medical or mental health treatment), educational elements (e.g., failure to educate a child or attend to special educational needs), and emotional elements (e.g., inattention to a child’s emotional needs, failure to provide psychological care, or permitting the child to use alcohol or other drugs). Failure to meet needs does not always mean a child is neglected, as situations such as poverty, cultural values, and community standards can influence the application of legal statutes. In addition, several states distinguish between failure to provide based on financial inability and failure to provide for no apparent financial reason.

Statutes on physical abuse typically include elements of physical injury (ranging from minor bruises to severe fractures or death) as a result of punching, beating, kicking, biting, shaking, throwing, stabbing, choking, hitting (with a hand, stick, strap, or other object), burning, or otherwise harming a child. Such injury is considered abuse regardless of the intention of the caretaker. In addition, many state statutes include allowing or encouraging another person to physically harm a child (such as noted above) as another form of physical abuse in and of itself. Sexual abuse usually includes activities by a parent or caretaker such as fondling a child’s genitals, penetration, incest, rape, sodomy, indecent exposure, and exploitation through prostitution or the production of pornographic materials.

Finally, emotional or psychological abuse typically is defined as a pattern of behavior that impairs a child’s emotional development or sense of self-worth. This may include constant criticism, threats, or rejection, as well as withholding love, support, or guidance. Emotional abuse is often the most difficult to prove and, therefore, child protective services may not be able to intervene without evidence of harm to the child. Some states suggest that harm may be evidenced by an observable or substantial change in behavior, emotional response, or cognition, or by anxiety, depression, withdrawal, or aggressive behavior. At a practical level, emotional abuse is almost always present when other types of abuse are identified.

Some states include an element of substance abuse in their statutes on child abuse. Circumstances that can be considered substance abuse include (a) the manufacture of a controlled substance in the presence of a child or on the premises occupied by a child (Colorado, Indiana, Iowa, Montana, South Dakota, Tennessee, and Virginia); (b) allowing a child to be present where the chemicals or equipment for the manufacture of controlled substances are used (Arizona, New Mexico); (c) selling, distributing, or giving drugs or alcohol to a child (Florida, Hawaii, Illinois, Minnesota, and Texas); (d) use of a controlled substance by a caregiver that impairs the caregiver’s ability to adequately care for the child (Kentucky, New York, Rhode Island, and Texas); and (e) exposure of the child to drug paraphernalia (North Dakota), the criminal sale or distribution of drugs (Montana, Virginia), or drug-related activity (District of Columbia).

One of the most difficult issues with which the U.S. legal system must contend is that of allowing parents the right to use corporal punishment when disciplining a child, while not letting them cross over the line into the realm of child abuse. Some parents may abuse their children under the guise of discipline, and many instances of child abuse arise from angry parents who go too far when disciplining their children with physical punishment. Generally, state statutes use terms such as “reasonable discipline of a minor,” “causes only temporary, short-term pain,” and may cause “the potential for bruising” but not “permanent damage, disability, disfigurement or injury” to the child as ways of indicating the types of discipline behaviors that are legal. However, corporal punishment that is “excessive,” “malicious,” “endangers the bodily safety of,” or is “an intentional infliction of injury” is not allowed under most state statutes (e.g., state of Florida child abuse statute).

Most research finds that the use of physical punishment (most often spanking) is not an effective method of discipline. The literature on this issue tends to find that spanking stops misbehavior, but no more effectively than other firm measures. Further, it seems to hinder rather than improve general compliance/obedience (particularly when the child is not in the presence of the punisher). Researchers have also explained why physical punishment is not any more effective at gaining child compliance than nonviolent forms of discipline. Some of the problems that arise when parents use spanking or other forms of physical punishment include the fact that spanking does not teach what children should do, nor does it provide them with alternative behavior options should the circumstance arise again. Spanking also undermines reasoning, explanation, or other forms of parental instruction because children cannot learn, reason, or problem solve well while experiencing threat, pain, fear, or anger. Further, the use of physical punishment is inconsistent with nonviolent principles, or parental modeling. In addition, the use of spanking chips away at the bonds of affection between parents and children, and tends to induce resentment and fear. Finally, it hinders the development of empathy and compassion in children, and they do not learn to take responsibility for their own behavior (Pitzer, 1997).

One of the biggest problems with the use of corporal punishment is that it can escalate into much more severe forms of violence. Usually, parents spank because they are angry (and somewhat out of control) and they can’t think of other ways to discipline. When parents are acting as a result of emotional triggers, the notion of discipline is lost while punishment and pain become the foci.

In 2006, of the children who were found to be victims of child abuse, nearly 75% of them were first-time victims (or had not come to the attention of authorities prior). A slight majority of child abuse victims were girls—51.5%, compared to 48% of abuse victims being boys. The younger the child, the more at risk he or she is for child abuse and neglect victimization. Specifically, the rate for infants (birth to 1 year old) was approximately 24 per 1,000 children of the same age group. The victimization rate for children 1–3 years old was 14 per 1,000 children of the same age group. The abuse rate for children aged 4– 7 years old declined further to 13 per 1,000 children of the same age group. African American, American Indian, and Alaska Native children, as well as children of multiple races, had the highest rates of victimization. White and Latino children had lower rates, and Asian children had the lowest rates of child abuse and neglect victimization. Regarding living arrangements, nearly 27% of victims were living with a single mother, 20% were living with married parents, while 22% were living with both parents but the marital status was unknown. (This reporting element had nearly 40% missing data, however.) Regarding disability, nearly 8% of child abuse victims had some degree of mental retardation, emotional disturbance, visual or hearing impairment, learning disability, physical disability, behavioral problems, or other medical problems. Unfortunately, data indicate that for many victims, the efforts of the child protection services system were not successful in preventing subsequent victimization. Children who had been prior victims of maltreatment were 96% more likely to experience another occurrence than those who were not prior victims. Further, child victims who were reported to have a disability were 52% more likely to experience recurrence than children without a disability. Finally, the oldest victims (16–21 years of age) were the least likely to experience a recurrence, and were 51% less likely to be victimized again than were infants (younger than age 1) (National Child Abuse and Neglect Data System, 2006).

Child fatalities are the most tragic consequence of maltreatment. Yet, each year, children die from abuse and neglect. In 2006, an estimated 1,530 children in the United States died due to abuse or neglect. The overall rate of child fatalities was 2 deaths per 100,000 children. More than 40% of child fatalities were attributed to neglect, but physical abuse also was a major contributor. Approximately 78% of the children who died due to child abuse and neglect were younger than 4 years old, and infant boys (younger than 1) had the highest rate of fatalities at 18.5 deaths per 100,000 boys of the same age in the national population. Infant girls had a rate of 14.7 deaths per 100,000 girls of the same age (National Child Abuse and Neglect Data System, 2006).

One question to be addressed regarding child fatalities is why infants have such a high rate of death when compared to toddlers and adolescents. Children under 1 year old pose an immense amount of responsibility for their caretakers: they are completely dependent and need constant attention. Children this age are needy, impulsive, and not amenable to verbal control or effective communication. This can easily overwhelm vulnerable parents. Another difficulty associated with infants is that they are physically weak and small. Injuries to infants can be fatal, while similar injuries to older children might not be. The most common cause of death in children less than 1 year is cerebral trauma (often the result of shaken-baby syndrome). Exasperated parents can deliver shakes or blows without realizing how little it takes to cause irreparable or fatal damage to an infant. Research informs us that two of the most common triggers for fatal child abuse are crying that will not cease and toileting accidents. Both of these circumstances are common in infants and toddlers whose only means of communication often is crying, and who are limited in mobility and cannot use the toilet. Finally, very young children cannot assist in injury diagnoses. Children who have been injured due to abuse or neglect often cannot communicate to medical professionals about where it hurts, how it hurts, and so forth. Also, nonfatal injuries can turn fatal in the absence of care by neglectful parents or parents who do not want medical professionals to possibly identify an injury as being the result of abuse.

Estimates reveal that nearly 80% of perpetrators of child abuse were parents of the victim. Other relatives accounted for nearly 7%, and unmarried partners of parents made up 4% of perpetrators. Of those perpetrators that were parents, over 90% were biological parents, 4% were stepparents, and 0.7% were adoptive parents. Of this group, approximately 58% of perpetrators were women and 42% were men. Women perpetrators are typically younger than men. The average age for women abusers was 31 years old, while for men the average was 34 years old. Forty percent of women who abused were younger than 30 years of age, compared with 33% of men being under 30. The racial distribution of perpetrators is similar to that of victims. Fifty-four percent were white, 21% were African American, and 20% were Hispanic/Latino (National Child Abuse and Neglect Data System, 2006).

There are many factors that are associated with child abuse. Some of the more common/well-accepted explanations are individual pathology, parent–child interaction, past abuse in the family (or social learning), situational factors, and cultural support for physical punishment along with a lack of cultural support for helping parents here in the United States.

The first explanation centers on the individual pathology of a parent or caretaker who is abusive. This theory focuses on the idea that people who abuse their children have something wrong with their individual personality or biological makeup. Such psychological pathologies may include having anger control problems; being depressed or having post-partum depression; having a low tolerance for frustration (e.g., children can be extremely frustrating: they don’t always listen; they constantly push the line of how far they can go; and once the line has been established, they are constantly treading on it to make sure it hasn’t moved. They are dependent and self-centered, so caretakers have very little privacy or time to themselves); being rigid (e.g., having no tolerance for differences—for example, what if your son wanted to play with dolls? A rigid father would not let him, laugh at him for wanting to, punish him when he does, etc.); having deficits in empathy (parents who cannot put themselves in the shoes of their children cannot fully understand what their children need emotionally); or being disorganized, inefficient, and ineffectual. (Parents who are unable to manage their own lives are unlikely to be successful at managing the lives of their children, and since many children want and need limits, these parents are unable to set them or adhere to them.)

Biological pathologies that may increase the likelihood of someone becoming a child abuser include having substance abuse or dependence problems, or having persistent or reoccurring physical health problems (especially health problems that can be extremely painful and can cause a person to become more self-absorbed, both qualities that can give rise to a lack of patience, lower frustration tolerance, and increased stress).

The second explanation for child abuse centers on the interaction between the parent and the child, noting that certain types of parents are more likely to abuse, and certain types of children are more likely to be abused, and when these less-skilled parents are coupled with these more difficult children, child abuse is the most likely to occur. Discussion here focuses on what makes a parent less skilled, and what makes a child more difficult. Characteristics of unskilled parents are likely to include such traits as only pointing out what children do wrong and never giving any encouragement for good behavior, and failing to be sensitive to the emotional needs of children. Less skilled parents tend to have unrealistic expectations of children. They may engage in role reversal— where the parents make the child take care of them—and view the parent’s happiness and well-being as the responsibility of the child. Some parents view the parental role as extremely stressful and experience little enjoyment from being a parent. Finally, less-skilled parents tend to have more negative perceptions regarding their child(ren). For example, perhaps the child has a different shade of skin than they expected and this may disappoint or anger them, they may feel the child is being manipulative (long before children have this capability), or they may view the child as the scapegoat for all the parents’ or family’s problems. Theoretically, parents with these characteristics would be more likely to abuse their children, but if they are coupled with having a difficult child, they would be especially likely to be abusive. So, what makes a child more difficult? Certainly, through no fault of their own, children may have characteristics that are associated with child care that is more demanding and difficult than in the “normal” or “average” situation. Such characteristics can include having physical and mental disabilities (autism, attention deficit hyperactivity disorder [ADHD], hyperactivity, etc.); the child may be colicky, frequently sick, be particularly needy, or cry more often. In addition, some babies are simply unhappier than other babies for reasons that cannot be known. Further, infants are difficult even in the best of circumstances. They are unable to communicate effectively, and they are completely dependent on their caretakers for everything, including eating, diaper changing, moving around, entertainment, and emotional bonding. Again, these types of children, being more difficult, are more likely to be victims of child abuse.

Nonetheless, each of these types of parents and children alone cannot explain the abuse of children, but it is the interaction between them that becomes the key. Unskilled parents may produce children that are happy and not as needy, and even though they are unskilled, they do not abuse because the child takes less effort. At the same time, children who are more difficult may have parents who are skilled and are able to handle and manage the extra effort these children take with aplomb. However, risks for child abuse increase when unskilled parents must contend with difficult children.

Social learning or past abuse in the family is a third common explanation for child abuse. Here, the theory concentrates not only on what children learn when they see or experience violence in their homes, but additionally on what they do not learn as a result of these experiences. Social learning theory in the context of family violence stresses that if children are abused or see abuse (toward siblings or a parent), those interactions and violent family members become the representations and role models for their future familial interactions. In this way, what children learn is just as important as what they do not learn. Children who witness or experience violence may learn that this is the way parents deal with children, or that violence is an acceptable method of child rearing and discipline. They may think when they become parents that “violence worked on me when I was a child, and I turned out fine.” They may learn unhealthy relationship interaction patterns; children may witness the negative interactions of parents and they may learn the maladaptive or violent methods of expressing anger, reacting to stress, or coping with conflict.

What is equally as important, though, is that they are unlikely to learn more acceptable and nonviolent ways of rearing children, interacting with family members, and working out conflict. Here it may happen that an adult who was abused as a child would like to be nonviolent toward his or her own children, but when the chips are down and the child is misbehaving, this abused-child-turned-adult does not have a repertoire of nonviolent strategies to try. This parent is more likely to fall back on what he or she knows as methods of discipline.

Something important to note here is that not all abused children grow up to become abusive adults. Children who break the cycle were often able to establish and maintain one healthy emotional relationship with someone during their childhoods (or period of young adulthood). For instance, they may have received emotional support from a nonabusing parent, or they received social support and had a positive relationship with another adult during their childhood (e.g., teacher, coach, minister, neighbor, etc.). Abused children who participate in therapy during some period of their lives can often break the cycle of violence. In addition, adults who were abused but are able to form an emotionally supportive and satisfying relationship with a mate can make the transition to being nonviolent in their family interactions.

Moving on to a fourth familiar explanation for child abuse, there are some common situational factors that influence families and parents and increase the risks for child abuse. Typically, these are factors that increase family stress or social isolation. Specifically, such factors may include receiving public assistance or having low socioeconomic status (a combination of low income and low education). Other factors include having family members who are unemployed, underemployed (working in a job that requires lower qualifications than an individual possesses), or employed only part time. These financial difficulties cause great stress for families in meeting the needs of the individual members. Other stress-inducing familial characteristics are single-parent households and larger family size. Finally, social isolation can be devastating for families and family members. Having friends to talk to, who can be relied upon, and with whom kids can be dropped off occasionally is tremendously important for personal growth and satisfaction in life. In addition, social isolation and stress can cause individuals to be quick to lose their tempers, as well as cause people to be less rational in their decision making and to make mountains out of mole hills. These situations can lead families to be at greater risk for child abuse.

Finally, cultural views and supports (or lack thereof) can lead to greater amounts of child abuse in a society such as the United States. One such cultural view is that of societal support for physical punishment. This is problematic because there are similarities between the way criminals are dealt with and the way errant children are handled. The use of capital punishment is advocated for seriously violent criminals, and people are quick to use such idioms as “spare the rod and spoil the child” when it comes to the discipline or punishment of children. In fact, it was not until quite recently that parenting books began to encourage parents to use other strategies than spanking or other forms of corporal punishment in the discipline of their children. Only recently, the American Academy of Pediatrics has come out and recommended that parents do not spank or use other forms of violence on their children because of the deleterious effects such methods have on youngsters and their bonds with their parents. Nevertheless, regardless of recommendations, the culture of corporal punishment persists.

Another cultural view in the United States that can give rise to greater incidents of child abuse is the belief that after getting married, couples of course should want and have children. Culturally, Americans consider that children are a blessing, raising kids is the most wonderful thing a person can do, and everyone should have children. Along with this notion is the idea that motherhood is always wonderful; it is the most fulfilling thing a woman can do; and the bond between a mother and her child is strong, glorious, and automatic—all women love being mothers. Thus, culturally (and theoretically), society nearly insists that married couples have children and that they will love having children. But, after children are born, there is not much support for couples who have trouble adjusting to parenthood, or who do not absolutely love their new roles as parents. People look askance at parents who need help, and cannot believe parents who say anything negative about parenthood. As such, theoretically, society has set up a situation where couples are strongly encouraged to have kids, are told they will love kids, but then society turns a blind or disdainful eye when these same parents need emotional, financial, or other forms of help or support. It is these types of cultural viewpoints that increase the risks for child abuse in society.

The consequences of child abuse are tremendous and long lasting. Research has shown that the traumatic experience of childhood abuse is life changing. These costs may surface during adolescence, or they may not become evident until abused children have grown up and become abusing parents or abused spouses. Early identification and treatment is important to minimize these potential long-term effects. Whenever children say they have been abused, it is imperative that they be taken seriously and their abuse be reported. Suspicions of child abuse must be reported as well. If there is a possibility that a child is or has been abused, an investigation must be conducted.

Children who have been abused may exhibit traits such as the inability to love or have faith in others. This often translates into adults who are unable to establish lasting and stable personal relationships. These individuals have trouble with physical closeness and touching as well as emotional intimacy and trust. Further, these qualities tend to cause a fear of entering into new relationships, as well as the sabotaging of any current ones.

Psychologically, children who have been abused tend to have poor self-images or are passive, withdrawn, or clingy. They may be angry individuals who are filled with rage, anxiety, and a variety of fears. They are often aggressive, disruptive, and depressed. Many abused children have flashbacks and nightmares about the abuse they have experienced, and this may cause sleep problems as well as drug and alcohol problems. Posttraumatic stress disorder (PTSD) and antisocial personality disorder are both typical among maltreated children. Research has also shown that most abused children fail to reach “successful psychosocial functioning,” and are thus not resilient and do not resume a “normal life” after the abuse has ended.

Socially (and likely because of these psychological injuries), abused children have trouble in school, will have difficulty getting and remaining employed, and may commit a variety of illegal or socially inappropriate behaviors. Many studies have shown that victims of child abuse are likely to participate in high-risk behaviors such as alcohol or drug abuse, the use of tobacco, and high-risk sexual behaviors (e.g., unprotected sex, large numbers of sexual partners). Later in life, abused children are more likely to have been arrested and homeless. They are also less able to defend themselves in conflict situations and guard themselves against repeated victimizations.

Medically, abused children likely will experience health problems due to the high frequency of physical injuries they receive. In addition, abused children experience a great deal of emotional turmoil and stress, which can also have a significant impact on their physical condition. These health problems are likely to continue occurring into adulthood. Some of these longer-lasting health problems include headaches; eating problems; problems with toileting; and chronic pain in the back, stomach, chest, and genital areas. Some researchers have noted that abused children may experience neurological impairment and problems with intellectual functioning, while others have found a correlation between abuse and heart, lung, and liver disease, as well as cancer (Thomas, 2004).

Victims of sexual abuse show an alarming number of disturbances as adults. Some dislike and avoid sex, or experience sexual problems or disorders, while other victims appear to enjoy sexual activities that are self-defeating or maladaptive—normally called “dysfunctional sexual behavior”—and have many sexual partners.

Abused children also experience a wide variety of developmental delays. Many do not reach physical, cognitive, or emotional developmental milestones at the typical time, and some never accomplish what they are supposed to during childhood socialization. In the next section, these developmental delays are discussed as a means of identifying children who may be abused.

There are two primary ways of identifying children who are abused: spotting and evaluating physical injuries, and detecting and appraising developmental delays. Distinguishing physical injuries due to abuse can be difficult, particularly among younger children who are likely to get hurt or receive injuries while they are playing and learning to become ambulatory. Nonetheless, there are several types of wounds that children are unlikely to give themselves during their normal course of play and exploration. These less likely injuries may signal instances of child abuse.

While it is true that children are likely to get bruises, particularly when they are learning to walk or crawl, bruises on infants are not normal. Also, the back of the legs, upper arms, or on the chest, neck, head, or genitals are also locations where bruises are unlikely to occur during normal childhood activity. Further, bruises with clean patterns, like hand prints, buckle prints, or hangers (to name a few), are good examples of the types of bruises children do not give themselves.

Another area of physical injury where the source of the injury can be difficult to detect is fractures. Again, children fall out of trees, or crash their bikes, and can break limbs. These can be normal parts of growing up. However, fractures in infants less than 12 months old are particularly suspect, as infants are unlikely to be able to accomplish the types of movement necessary to actually break a leg or an arm. Further, multiple fractures, particularly more than one on a bone, should be examined more closely. Spiral or torsion fractures (when the bone is broken by twisting) are suspect because when children break their bones due to play injuries, the fractures are usually some other type (e.g., linear, oblique, compacted). In addition, when parents don’t know about the fracture(s) or how it occurred, abuse should be considered, because when children get these types of injuries, they need comfort and attention.

Head and internal injuries are also those that may signal abuse. Serious blows to the head cause internal head injuries, and this is very different from the injuries that result from bumping into things. Abused children are also likely to experience internal injuries like those to the abdomen, liver, kidney, and bladder. They may suffer a ruptured spleen, or intestinal perforation. These types of damages rarely happen by accident.

Burns are another type of physical injury that can happen by accident or by abuse. Nevertheless, there are ways to tell these types of burn injuries apart. The types of burns that should be examined and investigated are those where the burns are in particular locations. Burns to the bottom of the feet, genitals, abdomen, or other inaccessible spots should be closely considered. Burns of the whole hand or those to the buttocks are also unlikely to happen as a result of an accident.

Turning to the detection and appraisal of developmental delays, one can more readily assess possible abuse by considering what children of various ages should be able to accomplish, than by noting when children are delayed and how many milestones on which they are behind schedule. Importantly, a few delays in reaching milestones can be expected, since children develop individually and not always according to the norm. Nonetheless, when children are abused, their development is likely to be delayed in numerous areas and across many milestones.

As children develop and grow, they should be able to crawl, walk, run, talk, control going to the bathroom, write, set priorities, plan ahead, trust others, make friends, develop a good self-image, differentiate between feeling and behavior, and get their needs met in appropriate ways. As such, when children do not accomplish these feats, their circumstances should be examined.

Infants who are abused or neglected typically develop what is termed failure to thrive syndrome. This syndrome is characterized by slow, inadequate growth, or not “filling out” physically. They have a pale, colorless complexion and dull eyes. They are not likely to spend much time looking around, and nothing catches their eyes. They may show other signs of lack of nutrition such as cuts, bruises that do not heal in a timely way, and discolored fingernails. They are also not trusting and may not cry much, as they are not expecting to have their needs met. Older infants may not have developed any language skills, or these developments are quite slow. This includes both verbal and nonverbal means of communication.

Toddlers who are abused often become hypervigilant about their environments and others’ moods. They are more outwardly focused than a typical toddler (who is quite self-centered) and may be unable to separate themselves as individuals, or consider themselves as distinct beings. In this way, abused toddlers cannot focus on tasks at hand because they are too concerned about others’ reactions. They don’t play with toys, have no interest in exploration, and seem unable to enjoy life. They are likely to accept losses with little reaction, and may have age-inappropriate knowledge of sex and sexual relations. Finally, toddlers, whether they are abused or not, begin to mirror their parents’ behaviors. Thus, toddlers who are abused may mimic the abuse when they are playing with dolls or “playing house.”

Developmental delays can also be detected among abused young adolescents. Some signs include the failure to learn cause and effect, since their parents are so inconsistent. They have no energy for learning and have not developed beyond one- or two-word commands. They probably cannot follow complicated directions (such as two to three tasks per instruction), and they are unlikely to be able to think for themselves. Typically, they have learned that failure is totally unacceptable, but they are more concerned with the teacher’s mood than with learning and listening to instruction. Finally, they are apt to have been inadequately toilet trained and thus may be unable to control their bladders.

Older adolescents, because they are likely to have been abused for a longer period of time, continue to get further and further behind in their developmental achievements. Abused children this age become family nurturers. They take care of their parents and cater to their parents’ needs, rather than the other way around. In addition, they probably take care of any younger siblings and do the household chores. Because of these default responsibilities, they usually do not participate in school activities; they frequently miss days at school; and they have few, if any, friends. Because they have become so hypervigilant and have increasingly delayed development, they lose interest in and become disillusioned with education. They develop low self-esteem and little confidence, but seem old for their years. Children this age who are abused are still likely to be unable to control their bladders and may have frequent toileting accidents.

Other developmental delays can occur and be observed in abused and neglected children of any age. For example, malnutrition and withdrawal can be noticed in infants through teenagers. Maltreated children frequently have persistent or untreated illnesses, and these can become permanent disabilities if medical conditions go untreated for a long enough time. Another example can be the consequences of neurological damage. Beyond being a medical issue, this type of damage can cause problems with social behavior and impulse control, which, again, can be discerned in various ages of children.

Once child abuse is suspected, law enforcement officers, child protection workers, or various other practitioners may need to interview the child about the abuse or neglect he or she may have suffered. Interviewing children can be extremely difficult because children at various stages of development can remember only certain parts or aspects of the events in their lives. Also, interviewers must be careful that they do not put ideas or answers into the heads of the children they are interviewing. There are several general recommendations when interviewing children about the abuse they may have experienced. First, interviewers must acknowledge that even when children are abused, they likely still love their parents. They do not want to be taken away from their parents, nor do they want to see their parents get into trouble. Interviewers must not blame the parents or be judgmental about them or the child’s family. Beyond that, interviews should take place in a safe, neutral location. Interviewers can use dolls and role-play to help children express the types of abuse of which they may be victims.

Finally, interviewers must ask age-appropriate questions. For example, 3-year-olds can probably only answer questions about what happened and who was involved. Four- to five-year-olds can also discuss where the incidents occurred. Along with what, who, and where, 6- to 8-year-olds can talk about the element of time, or when the abuse occurred. Nine- to 10-year-olds are able to add commentary about the number of times the abuse occurred. Finally, 11-year-olds and older children can additionally inform interviewers about the circumstances of abusive instances.

A conclusion is not a summary of what a writer has already mentioned. On the contrary, it is the last point made. Taking every detail of the investigation, the researcher makes the concluding point. In this part of a paper, you need to put a full stop in your research. You need to persuade the reader in your opinion.

Never add any new information in the conclusion. You can present solutions to the problem and you dwell upon the results, but only if this information has been already mentioned in the main body.

Child advocates recommend a variety of strategies to aid families and children experiencing abuse. These recommendations tend to focus on societal efforts as well as more individual efforts. One common strategy advocated is the use of public service announcements that encourage individuals to report any suspected child abuse. Currently, many mandatory reporters (those required by law to report abuse such as teachers, doctors, and social service agency employees) and members of communities feel that child abuse should not be reported unless there is substantial evidence that abuse is indeed occurring. Child advocates stress that this notion should be changed, and that people should report child abuse even if it is only suspected. Public service announcements should stress that if people report suspected child abuse, the worst that can happen is that they might be wrong, but in the grander scheme of things that is really not so bad.

Child advocates also stress that greater interagency cooperation is needed. This cooperation should be evident between women’s shelters, child protection agencies, programs for at-risk children, medical agencies, and law enforcement officers. These agencies typically do not share information, and if they did, more instances of child abuse would come to the attention of various authorities and could be investigated and managed. Along these lines, child protection agencies and programs should receive more funding. When budgets are cut, social services are often the first things to go or to get less financial support. Child advocates insist that with more resources, child protection agencies could hire more workers, handle more cases, conduct more investigations, and follow up with more children and families.

Continuing, more educational efforts must be initiated about issues such as punishment and discipline styles and strategies; having greater respect for children; as well as informing the community about what child abuse is, and how to recognize it. In addition, Americans must alter the cultural orientation about child bearing and child rearing. Couples who wish to remain child-free must be allowed to do so without disdain. And, it must be acknowledged that raising children is very difficult, is not always gloriously wonderful, and that parents who seek help should be lauded and not criticized. These kinds of efforts can help more children to be raised in nonviolent, emotionally satisfying families, and thus become better adults.

Bibliography

When you write a paper, make sure you are aware of all the formatting requirements. Incorrect formatting can lower your mark, so do not underestimate the importance of this part.

Organizing your bibliography is quite a tedious and time-consuming task. Still, you need to do it flawlessly. For this reason, analyze all the standards you need to meet or ask professionals to help you with it. All the comas, colons, brackets etc. matter. They truly do.

Bibliography:

  • American Academy of Pediatrics: https://www.aap.org/
  • Bancroft, L., & Silverman, J. G. (2002). The batterer as parent. Thousand Oaks, CA: Sage.
  • Child Abuse Prevention and Treatment Act, 42 U.S.C.A. § 5106g (1998).
  • Childhelp: Child Abuse Statistics: https://www.childhelp.org/child-abuse-statistics/
  • Children’s Defense Fund: https://www.childrensdefense.org/
  • Child Stats.gov: https://www.childstats.gov/
  • Child Welfare League of America: https://www.cwla.org/
  • Crosson-Tower, C. (2008). Understanding child abuse and neglect (7th ed.). Boston: Allyn & Bacon.
  • DeBecker, G. (1999). Protecting the gift: Keeping children and teenagers safe (and parents sane). New York: Bantam Dell.
  • Family Research Laboratory at the University of New Hampshire: https://cola.unh.edu/family-research-laboratory
  • Guterman, N. B. (2001). Stopping child maltreatment before it starts: Emerging horizons in early home visitation services. Thousand Oaks, CA: Sage.
  • Herman, J. L. (2000). Father-daughter incest. Cambridge, MA: Harvard University Press.
  • Medline Plus, Child Abuse: https://medlineplus.gov/childabuse.html
  • Myers, J. E. B. (Ed.). (1994). The backlash: Child protection under fire. Newbury Park, CA: Sage.
  • National Center for Missing and Exploited Children: https://www.missingkids.org/home
  • National Child Abuse and Neglect Data System. (2006). Child maltreatment 2006: Reports from the states to the National Child Abuse and Neglect Data System. Washington, DC: U.S. Department of Health and Human Services, Administration for Children and Families.
  • New York University Silver School of Social Work: https://socialwork.nyu.edu/
  • Pitzer, R. L. (1997). Corporal punishment in the discipline of children in the home: Research update for practitioners. Paper presented at the National Council on Family Relations Annual Conference, Washington, DC.
  • RAND, Child Abuse and Neglect: https://www.rand.org/topics/child-abuse-and-neglect.html
  • Richards, C. E. (2001). The loss of innocents: Child killers and their victims. Wilmington, DE: Scholarly Resources.
  • Straus, M. A. (2001). Beating the devil out of them: Corporal punishment in American families and its effects on children. Edison, NJ: Transaction.
  • Thomas, P. M. (2004). Protection, dissociation, and internal roles: Modeling and treating the effects of child abuse. Review of General Psychology, 7(15).
  • U.S. Department of Health and Human Services, Administration for Children and Families: https://www.acf.hhs.gov/

Custom Research Paper Writing Service

Having doubts whether you can handle it on your own? Sometimes it is not enough to examine research paper examples to write one yourself. That is why our custom research paper writing service is here to help you.

Here is what you can get if you order your paper online:

  • 100% unique content

We will write your paper from scratch. It includes profound research of the topic, writing and editing. Plus, we always check the assignments with anti-plagiarism program to avoid even accidental copying. So, be sure your paper will 100% unique.

  • Top-notch quality

Our professional writers work hard and you get the top results. We work with Native Speakers only. All of our authors are masters of academic writing. Not to mention their ability to think outside the box – your paper will stand out among the others.

  • Affordable papers

Every client can get discounts and bonuses. We offer reasonable prices, so you can save your money with us.

  • On-time delivery

No matter how urgent the order is, we will always meet the deadline. This is how we work. We get orders 24/7 and get down to work immediately. We always can make it.

  • Individual approach

We communicate with every client individually. We never copy the tasks. It is never a routine, as every order requires new approach, new standards, and new requirements. We for our part aim at satisfying you as a client.

We hope that writing a paper seems easier now. If there are any questions left, feel free to contact us and we will answer any of them.

ORDER HIGH QUALITY CUSTOM PAPER

paper research example

  • Foundations
  • Write Paper

Search form

  • Experiments
  • Anthropology
  • Self-Esteem
  • Social Anxiety

paper research example

  • Research Paper >

Example of a Research Paper

What follows is a hypothetical example of a research paper based on an experiment.

This article is a part of the guide:

  • Outline Examples
  • Write a Hypothesis
  • Introduction
  • Example of a Paper 2

Browse Full Outline

  • 1 Write a Research Paper
  • 2 Writing a Paper
  • 3.1 Write an Outline
  • 3.2 Outline Examples
  • 4.1 Thesis Statement
  • 4.2 Write a Hypothesis
  • 5.2 Abstract
  • 5.3 Introduction
  • 5.4 Methods
  • 5.5 Results
  • 5.6 Discussion
  • 5.7 Conclusion
  • 5.8 Bibliography
  • 6.1 Table of Contents
  • 6.2 Acknowledgements
  • 6.3 Appendix
  • 7.1 In Text Citations
  • 7.2 Footnotes
  • 7.3.1 Floating Blocks
  • 7.4 Example of a Paper
  • 7.5 Example of a Paper 2
  • 7.6.1 Citations
  • 7.7.1 Writing Style
  • 7.7.2 Citations
  • 8.1.1 Sham Peer Review
  • 8.1.2 Advantages
  • 8.1.3 Disadvantages
  • 8.2 Publication Bias
  • 8.3.1 Journal Rejection
  • 9.1 Article Writing
  • 9.2 Ideas for Topics

The experiment: Say you have just conducted the Milgram Study . Now you want to write the research paper for it. (Milgram actually waited two years before writing about his study.)

Here's a shortened example of a research article that MIGHT have been written.

DISCLAIMER: This article is not written by Stanley Milgram, but is intended as an example of a psychology research paper that someone might have written after conducting the first Milgram-study. It's presented here for educational purposes.

Normally you would use double spacing in the paper.

EXAMPLE OF A RESEARCH PAPER

paper research example

--- START OF EXAMPLE ---

[Page 1 - text aligned in the center and middle of the page]

"Behavioral Study of Obedience"

by [author], [University]

[Page 2 - text starts at the top, left]

There are few facts about the role of obedience when committing acts against one’s personal conscience (1961). Most theories suggest that only very disturbed people are capable of administering pain to an ordinary citizen if they are ordered to do so. Our experiment tested people's obedience to authority. The results showed that most obey all orders given by the authority-figure, despite their unwillingness. The conclusion is that, contrary to common belief, personal ethics mean little when pitted against authority.  

[Page 3-X - text starts in the top, left corner, no extra spacing to align text]

Current theories focus on personal characteristics to explain wrong-doing and how someone can intentionally harm others. In a survey, professionals such as doctors, psychologist and laymen predicted that a small proportion of a population (1-3%) would harm others if ordered to do so. In the recent war trial with Adolph Eichmann, he claims to only have been “following orders". The author wanted to test this claim. Can people harm others because they are merely obeying orders? Can people be ordered to act against their moral convictions? The experiment will test whether a person can keep administering painful electric shocks to another person just because they are ordered to do so. The expectation is that very few will keep giving shocks, and that most participants will disobey the order.

Participants There were 30 male participants. They were recruited by advertisement in a newspaper and were paid $4.50. Instruments A "shock generator" was used to trick the participants into thinking that they were giving an electric shock to another person in another room. The shock generator had switches labeled with different voltages, starting at 30 volts and increasing in 15-volt increments all the way up to 450 volts. The switches were also labeled with terms which reminded the participant of how dangerous the shocks were. Procedures The participant met another "participant" in the waiting room before the experiment. The other "participant" was an actor. Each participant got the role as a "teacher" who would then deliver a shock to the actor ("learner") every time an incorrect answer to a question was produced. The participant believed that he was delivering real shocks to the learner. The learner would pretend to be shocked. As the experiment progressed, the teacher would hear the learner plead to be released and complain about a heart condition. Once the 300-volt level had been reached, the learner banged on the wall and demanded to be released. Beyond this point, the learner became completely silent and refused to answer any more questions. The experimenter then instructed the participant to treat this silence as an incorrect response and deliver a further shock. When asking the experimenter if they should stop, they were instructed to continue.

Of the 40 participants in the study, 26 delivered the maximum shocks. 14 persons did not obey the experimenter and stopped before reaching the highest levels. All 40 participants continued to give shocks up to 300 volts.

Discussion/Conclusion

Most of the participants became very agitated, stressed and angry at the experimenter. Many continued to follow orders throughout even though they were clearly uncomfortable. The study shows that people are able to harm others intentionally if ordered to do so. It provides evidence that this dynamic is far more important than previously believed, and that personal ethics are less predictive of such behavior.

[Read more about references here]

paper research example

--- END OF EXAMPLE ---   

The scientific format: a research paper outline:.

Title , Author, Work/School

Abstract : A short summary of the article.

Current theories about the topic. What are the  hypothesis  for the paper?

What method used.

What were the results obtained?

Discussion  and  Conclusion

What are our thought about the results compared to other relevant theories.

Through the text there are references, sources of knowledge, which you've used.  Citing  those will give you more credibility because good research is thought to be based on other knowledge and  empirical (observed) evidence .

Tables ,  Figures ,  Appendix

  • Psychology 101
  • Flags and Countries
  • Capitals and Countries

Martyn Shuttleworth (May 21, 2008). Example of a Research Paper. Retrieved Feb 24, 2024 from Explorable.com: https://explorable.com/example-of-a-research-paper

You Are Allowed To Copy The Text

The text in this article is licensed under the Creative Commons-License Attribution 4.0 International (CC BY 4.0) .

This means you're free to copy, share and adapt any parts (or all) of the text in the article, as long as you give appropriate credit and provide a link/reference to this page.

That is it. You don't need our permission to copy the article; just include a link/reference back to this page. You can use it freely (with some kind of link), and we're also okay with people reprinting in publications like books, blogs, newsletters, course-material, papers, wikipedia and presentations (with clear attribution).

Want to stay up to date? Follow us!

Check out the official book.

Learn how to construct, style and format an Academic paper and take your skills to the next level.

paper research example

(also available as ebook )

Save this course for later

Don't have time for it all now? No problem, save it as a course and come back to it later.

Footer bottom

  • Privacy Policy

paper research example

  • Subscribe to our RSS Feed
  • Like us on Facebook
  • Follow us on Twitter
  • Privacy Policy
  • SignUp/Login

Research Method

Home » Research Paper Format – Types, Examples and Templates

Research Paper Format – Types, Examples and Templates

Table of Contents

Research Paper Formats

Research paper format is an essential aspect of academic writing that plays a crucial role in the communication of research findings . The format of a research paper depends on various factors such as the discipline, style guide, and purpose of the research. It includes guidelines for the structure, citation style, referencing , and other elements of the paper that contribute to its overall presentation and coherence. Adhering to the appropriate research paper format is vital for ensuring that the research is accurately and effectively communicated to the intended audience. In this era of information, it is essential to understand the different research paper formats and their guidelines to communicate research effectively, accurately, and with the required level of detail. This post aims to provide an overview of some of the common research paper formats used in academic writing.

Research Paper Formats

Research Paper Formats are as follows:

  • APA (American Psychological Association) format
  • MLA (Modern Language Association) format
  • Chicago/Turabian style
  • IEEE (Institute of Electrical and Electronics Engineers) format
  • AMA (American Medical Association) style
  • Harvard style
  • Vancouver style
  • ACS (American Chemical Society) style
  • ASA (American Sociological Association) style
  • APSA (American Political Science Association) style

APA (American Psychological Association) Format

Here is a general APA format for a research paper:

  • Title Page: The title page should include the title of your paper, your name, and your institutional affiliation. It should also include a running head, which is a shortened version of the title, and a page number in the upper right-hand corner.
  • Abstract : The abstract is a brief summary of your paper, typically 150-250 words. It should include the purpose of your research, the main findings, and any implications or conclusions that can be drawn.
  • Introduction: The introduction should provide background information on your topic, state the purpose of your research, and present your research question or hypothesis. It should also include a brief literature review that discusses previous research on your topic.
  • Methods: The methods section should describe the procedures you used to collect and analyze your data. It should include information on the participants, the materials and instruments used, and the statistical analyses performed.
  • Results: The results section should present the findings of your research in a clear and concise manner. Use tables and figures to help illustrate your results.
  • Discussion : The discussion section should interpret your results and relate them back to your research question or hypothesis. It should also discuss the implications of your findings and any limitations of your study.
  • References : The references section should include a list of all sources cited in your paper. Follow APA formatting guidelines for your citations and references.

Some additional tips for formatting your APA research paper:

  • Use 12-point Times New Roman font throughout the paper.
  • Double-space all text, including the references.
  • Use 1-inch margins on all sides of the page.
  • Indent the first line of each paragraph by 0.5 inches.
  • Use a hanging indent for the references (the first line should be flush with the left margin, and all subsequent lines should be indented).
  • Number all pages, including the title page and references page, in the upper right-hand corner.

APA Research Paper Format Template

APA Research Paper Format Template is as follows:

Title Page:

  • Title of the paper
  • Author’s name
  • Institutional affiliation
  • A brief summary of the main points of the paper, including the research question, methods, findings, and conclusions. The abstract should be no more than 250 words.

Introduction:

  • Background information on the topic of the research paper
  • Research question or hypothesis
  • Significance of the study
  • Overview of the research methods and design
  • Brief summary of the main findings
  • Participants: description of the sample population, including the number of participants and their characteristics (age, gender, ethnicity, etc.)
  • Materials: description of any materials used in the study (e.g., survey questions, experimental apparatus)
  • Procedure: detailed description of the steps taken to conduct the study
  • Presentation of the findings of the study, including statistical analyses if applicable
  • Tables and figures may be included to illustrate the results

Discussion:

  • Interpretation of the results in light of the research question and hypothesis
  • Implications of the study for the field
  • Limitations of the study
  • Suggestions for future research

References:

  • A list of all sources cited in the paper, in APA format

Formatting guidelines:

  • Double-spaced
  • 12-point font (Times New Roman or Arial)
  • 1-inch margins on all sides
  • Page numbers in the top right corner
  • Headings and subheadings should be used to organize the paper
  • The first line of each paragraph should be indented
  • Quotations of 40 or more words should be set off in a block quote with no quotation marks
  • In-text citations should include the author’s last name and year of publication (e.g., Smith, 2019)

APA Research Paper Format Example

APA Research Paper Format Example is as follows:

The Effects of Social Media on Mental Health

University of XYZ

This study examines the relationship between social media use and mental health among college students. Data was collected through a survey of 500 students at the University of XYZ. Results suggest that social media use is significantly related to symptoms of depression and anxiety, and that the negative effects of social media are greater among frequent users.

Social media has become an increasingly important aspect of modern life, especially among young adults. While social media can have many positive effects, such as connecting people across distances and sharing information, there is growing concern about its impact on mental health. This study aims to examine the relationship between social media use and mental health among college students.

Participants: Participants were 500 college students at the University of XYZ, recruited through online advertisements and flyers posted on campus. Participants ranged in age from 18 to 25, with a mean age of 20.5 years. The sample was 60% female, 40% male, and 5% identified as non-binary or gender non-conforming.

Data was collected through an online survey administered through Qualtrics. The survey consisted of several measures, including the Patient Health Questionnaire-9 (PHQ-9) for depression symptoms, the Generalized Anxiety Disorder-7 (GAD-7) for anxiety symptoms, and questions about social media use.

Procedure :

Participants were asked to complete the online survey at their convenience. The survey took approximately 20-30 minutes to complete. Data was analyzed using descriptive statistics, correlations, and multiple regression analysis.

Results indicated that social media use was significantly related to symptoms of depression (r = .32, p < .001) and anxiety (r = .29, p < .001). Regression analysis indicated that frequency of social media use was a significant predictor of both depression symptoms (β = .24, p < .001) and anxiety symptoms (β = .20, p < .001), even when controlling for age, gender, and other relevant factors.

The results of this study suggest that social media use is associated with symptoms of depression and anxiety among college students. The negative effects of social media are greater among frequent users. These findings have important implications for mental health professionals and educators, who should consider addressing the potential negative effects of social media use in their work with young adults.

References :

References should be listed in alphabetical order according to the author’s last name. For example:

  • Chou, H. T. G., & Edge, N. (2012). “They are happier and having better lives than I am”: The impact of using Facebook on perceptions of others’ lives. Cyberpsychology, Behavior, and Social Networking, 15(2), 117-121.
  • Twenge, J. M., Joiner, T. E., Rogers, M. L., & Martin, G. N. (2018). Increases in depressive symptoms, suicide-related outcomes, and suicide rates among U.S. adolescents after 2010 and links to increased new media screen time. Clinical Psychological Science, 6(1), 3-17.

Note: This is just a sample Example do not use this in your assignment.

MLA (Modern Language Association) Format

MLA (Modern Language Association) Format is as follows:

  • Page Layout : Use 8.5 x 11-inch white paper, with 1-inch margins on all sides. The font should be 12-point Times New Roman or a similar serif font.
  • Heading and Title : The first page of your research paper should include a heading and a title. The heading should include your name, your instructor’s name, the course title, and the date. The title should be centered and in title case (capitalizing the first letter of each important word).
  • In-Text Citations : Use parenthetical citations to indicate the source of your information. The citation should include the author’s last name and the page number(s) of the source. For example: (Smith 23).
  • Works Cited Page : At the end of your paper, include a Works Cited page that lists all the sources you used in your research. Each entry should include the author’s name, the title of the work, the publication information, and the medium of publication.
  • Formatting Quotations : Use double quotation marks for short quotations and block quotations for longer quotations. Indent the entire quotation five spaces from the left margin.
  • Formatting the Body : Use a clear and readable font and double-space your text throughout. The first line of each paragraph should be indented one-half inch from the left margin.

MLA Research Paper Template

MLA Research Paper Format Template is as follows:

  • Use 8.5 x 11 inch white paper.
  • Use a 12-point font, such as Times New Roman.
  • Use double-spacing throughout the entire paper, including the title page and works cited page.
  • Set the margins to 1 inch on all sides.
  • Use page numbers in the upper right corner, beginning with the first page of text.
  • Include a centered title for the research paper, using title case (capitalizing the first letter of each important word).
  • Include your name, instructor’s name, course name, and date in the upper left corner, double-spaced.

In-Text Citations

  • When quoting or paraphrasing information from sources, include an in-text citation within the text of your paper.
  • Use the author’s last name and the page number in parentheses at the end of the sentence, before the punctuation mark.
  • If the author’s name is mentioned in the sentence, only include the page number in parentheses.

Works Cited Page

  • List all sources cited in alphabetical order by the author’s last name.
  • Each entry should include the author’s name, title of the work, publication information, and medium of publication.
  • Use italics for book and journal titles, and quotation marks for article and chapter titles.
  • For online sources, include the date of access and the URL.

Here is an example of how the first page of a research paper in MLA format should look:

Headings and Subheadings

  • Use headings and subheadings to organize your paper and make it easier to read.
  • Use numerals to number your headings and subheadings (e.g. 1, 2, 3), and capitalize the first letter of each word.
  • The main heading should be centered and in boldface type, while subheadings should be left-aligned and in italics.
  • Use only one space after each period or punctuation mark.
  • Use quotation marks to indicate direct quotes from a source.
  • If the quote is more than four lines, format it as a block quote, indented one inch from the left margin and without quotation marks.
  • Use ellipses (…) to indicate omitted words from a quote, and brackets ([…]) to indicate added words.

Works Cited Examples

  • Book: Last Name, First Name. Title of Book. Publisher, Publication Year.
  • Journal Article: Last Name, First Name. “Title of Article.” Title of Journal, volume number, issue number, publication date, page numbers.
  • Website: Last Name, First Name. “Title of Webpage.” Title of Website, publication date, URL. Accessed date.

Here is an example of how a works cited entry for a book should look:

Smith, John. The Art of Writing Research Papers. Penguin, 2021.

MLA Research Paper Example

MLA Research Paper Format Example is as follows:

Your Professor’s Name

Course Name and Number

Date (in Day Month Year format)

Word Count (not including title page or Works Cited)

Title: The Impact of Video Games on Aggression Levels

Video games have become a popular form of entertainment among people of all ages. However, the impact of video games on aggression levels has been a subject of debate among scholars and researchers. While some argue that video games promote aggression and violent behavior, others argue that there is no clear link between video games and aggression levels. This research paper aims to explore the impact of video games on aggression levels among young adults.

Background:

The debate on the impact of video games on aggression levels has been ongoing for several years. According to the American Psychological Association, exposure to violent media, including video games, can increase aggression levels in children and adolescents. However, some researchers argue that there is no clear evidence to support this claim. Several studies have been conducted to examine the impact of video games on aggression levels, but the results have been mixed.

Methodology:

This research paper used a quantitative research approach to examine the impact of video games on aggression levels among young adults. A sample of 100 young adults between the ages of 18 and 25 was selected for the study. The participants were asked to complete a questionnaire that measured their aggression levels and their video game habits.

The results of the study showed that there was a significant correlation between video game habits and aggression levels among young adults. The participants who reported playing violent video games for more than 5 hours per week had higher aggression levels than those who played less than 5 hours per week. The study also found that male participants were more likely to play violent video games and had higher aggression levels than female participants.

The findings of this study support the claim that video games can increase aggression levels among young adults. However, it is important to note that the study only examined the impact of video games on aggression levels and did not take into account other factors that may contribute to aggressive behavior. It is also important to note that not all video games promote violence and aggression, and some games may have a positive impact on cognitive and social skills.

Conclusion :

In conclusion, this research paper provides evidence to support the claim that video games can increase aggression levels among young adults. However, it is important to conduct further research to examine the impact of video games on other aspects of behavior and to explore the potential benefits of video games. Parents and educators should be aware of the potential impact of video games on aggression levels and should encourage young adults to engage in a variety of activities that promote cognitive and social skills.

Works Cited:

  • American Psychological Association. (2017). Violent Video Games: Myths, Facts, and Unanswered Questions. Retrieved from https://www.apa.org/news/press/releases/2017/08/violent-video-games
  • Ferguson, C. J. (2015). Do Angry Birds make for angry children? A meta-analysis of video game influences on children’s and adolescents’ aggression, mental health, prosocial behavior, and academic performance. Perspectives on Psychological Science, 10(5), 646-666.
  • Gentile, D. A., Swing, E. L., Lim, C. G., & Khoo, A. (2012). Video game playing, attention problems, and impulsiveness: Evidence of bidirectional causality. Psychology of Popular Media Culture, 1(1), 62-70.
  • Greitemeyer, T. (2014). Effects of prosocial video games on prosocial behavior. Journal of Personality and Social Psychology, 106(4), 530-548.

Chicago/Turabian Style

Chicago/Turabian Formate is as follows:

  • Margins : Use 1-inch margins on all sides of the paper.
  • Font : Use a readable font such as Times New Roman or Arial, and use a 12-point font size.
  • Page numbering : Number all pages in the upper right-hand corner, beginning with the first page of text. Use Arabic numerals.
  • Title page: Include a title page with the title of the paper, your name, course title and number, instructor’s name, and the date. The title should be centered on the page and in title case (capitalize the first letter of each word).
  • Headings: Use headings to organize your paper. The first level of headings should be centered and in boldface or italics. The second level of headings should be left-aligned and in boldface or italics. Use as many levels of headings as necessary to organize your paper.
  • In-text citations : Use footnotes or endnotes to cite sources within the text of your paper. The first citation for each source should be a full citation, and subsequent citations can be shortened. Use superscript numbers to indicate footnotes or endnotes.
  • Bibliography : Include a bibliography at the end of your paper, listing all sources cited in your paper. The bibliography should be in alphabetical order by the author’s last name, and each entry should include the author’s name, title of the work, publication information, and date of publication.
  • Formatting of quotations: Use block quotations for quotations that are longer than four lines. Indent the entire quotation one inch from the left margin, and do not use quotation marks. Single-space the quotation, and double-space between paragraphs.
  • Tables and figures: Use tables and figures to present data and illustrations. Number each table and figure sequentially, and provide a brief title for each. Place tables and figures as close as possible to the text that refers to them.
  • Spelling and grammar : Use correct spelling and grammar throughout your paper. Proofread carefully for errors.

Chicago/Turabian Research Paper Template

Chicago/Turabian Research Paper Template is as folows:

Title of Paper

Name of Student

Professor’s Name

I. Introduction

A. Background Information

B. Research Question

C. Thesis Statement

II. Literature Review

A. Overview of Existing Literature

B. Analysis of Key Literature

C. Identification of Gaps in Literature

III. Methodology

A. Research Design

B. Data Collection

C. Data Analysis

IV. Results

A. Presentation of Findings

B. Analysis of Findings

C. Discussion of Implications

V. Conclusion

A. Summary of Findings

B. Implications for Future Research

C. Conclusion

VI. References

A. Bibliography

B. In-Text Citations

VII. Appendices (if necessary)

A. Data Tables

C. Additional Supporting Materials

Chicago/Turabian Research Paper Example

Title: The Impact of Social Media on Political Engagement

Name: John Smith

Class: POLS 101

Professor: Dr. Jane Doe

Date: April 8, 2023

I. Introduction:

Social media has become an integral part of our daily lives. People use social media platforms like Facebook, Twitter, and Instagram to connect with friends and family, share their opinions, and stay informed about current events. With the rise of social media, there has been a growing interest in understanding its impact on various aspects of society, including political engagement. In this paper, I will examine the relationship between social media use and political engagement, specifically focusing on how social media influences political participation and political attitudes.

II. Literature Review:

There is a growing body of literature on the impact of social media on political engagement. Some scholars argue that social media has a positive effect on political participation by providing new channels for political communication and mobilization (Delli Carpini & Keeter, 1996; Putnam, 2000). Others, however, suggest that social media can have a negative impact on political engagement by creating filter bubbles that reinforce existing beliefs and discourage political dialogue (Pariser, 2011; Sunstein, 2001).

III. Methodology:

To examine the relationship between social media use and political engagement, I conducted a survey of 500 college students. The survey included questions about social media use, political participation, and political attitudes. The data was analyzed using descriptive statistics and regression analysis.

Iv. Results:

The results of the survey indicate that social media use is positively associated with political participation. Specifically, respondents who reported using social media to discuss politics were more likely to have participated in a political campaign, attended a political rally, or contacted a political representative. Additionally, social media use was found to be associated with more positive attitudes towards political engagement, such as increased trust in government and belief in the effectiveness of political action.

V. Conclusion:

The findings of this study suggest that social media has a positive impact on political engagement, by providing new opportunities for political communication and mobilization. However, there is also a need for caution, as social media can also create filter bubbles that reinforce existing beliefs and discourage political dialogue. Future research should continue to explore the complex relationship between social media and political engagement, and develop strategies to harness the potential benefits of social media while mitigating its potential negative effects.

Vii. References:

  • Delli Carpini, M. X., & Keeter, S. (1996). What Americans know about politics and why it matters. Yale University Press.
  • Pariser, E. (2011). The filter bubble: What the Internet is hiding from you. Penguin.
  • Putnam, R. D. (2000). Bowling alone: The collapse and revival of American community. Simon & Schuster.
  • Sunstein, C. R. (2001). Republic.com. Princeton University Press.

IEEE (Institute of Electrical and Electronics Engineers) Format

IEEE (Institute of Electrical and Electronics Engineers) Research Paper Format is as follows:

  • Title : A concise and informative title that accurately reflects the content of the paper.
  • Abstract : A brief summary of the paper, typically no more than 250 words, that includes the purpose of the study, the methods used, the key findings, and the main conclusions.
  • Introduction : An overview of the background, context, and motivation for the research, including a clear statement of the problem being addressed and the objectives of the study.
  • Literature review: A critical analysis of the relevant research and scholarship on the topic, including a discussion of any gaps or limitations in the existing literature.
  • Methodology : A detailed description of the methods used to collect and analyze data, including any experiments or simulations, data collection instruments or procedures, and statistical analyses.
  • Results : A clear and concise presentation of the findings, including any relevant tables, graphs, or figures.
  • Discussion : A detailed interpretation of the results, including a comparison of the findings with previous research, a discussion of the implications of the results, and any recommendations for future research.
  • Conclusion : A summary of the key findings and main conclusions of the study.
  • References : A list of all sources cited in the paper, formatted according to IEEE guidelines.

In addition to these elements, an IEEE research paper should also follow certain formatting guidelines, including using 12-point font, double-spaced text, and numbered headings and subheadings. Additionally, any tables, figures, or equations should be clearly labeled and referenced in the text.

AMA (American Medical Association) Style

AMA (American Medical Association) Style Research Paper Format:

  • Title Page: This page includes the title of the paper, the author’s name, institutional affiliation, and any acknowledgments or disclaimers.
  • Abstract: The abstract is a brief summary of the paper that outlines the purpose, methods, results, and conclusions of the study. It is typically limited to 250 words or less.
  • Introduction: The introduction provides a background of the research problem, defines the research question, and outlines the objectives and hypotheses of the study.
  • Methods: The methods section describes the research design, participants, procedures, and instruments used to collect and analyze data.
  • Results: The results section presents the findings of the study in a clear and concise manner, using graphs, tables, and charts where appropriate.
  • Discussion: The discussion section interprets the results, explains their significance, and relates them to previous research in the field.
  • Conclusion: The conclusion summarizes the main points of the paper, discusses the implications of the findings, and suggests future research directions.
  • References: The reference list includes all sources cited in the paper, listed in alphabetical order by author’s last name.

In addition to these sections, the AMA format requires that authors follow specific guidelines for citing sources in the text and formatting their references. The AMA style uses a superscript number system for in-text citations and provides specific formats for different types of sources, such as books, journal articles, and websites.

Harvard Style

Harvard Style Research Paper format is as follows:

  • Title page: This should include the title of your paper, your name, the name of your institution, and the date of submission.
  • Abstract : This is a brief summary of your paper, usually no more than 250 words. It should outline the main points of your research and highlight your findings.
  • Introduction : This section should introduce your research topic, provide background information, and outline your research question or thesis statement.
  • Literature review: This section should review the relevant literature on your topic, including previous research studies, academic articles, and other sources.
  • Methodology : This section should describe the methods you used to conduct your research, including any data collection methods, research instruments, and sampling techniques.
  • Results : This section should present your findings in a clear and concise manner, using tables, graphs, and other visual aids if necessary.
  • Discussion : This section should interpret your findings and relate them to the broader research question or thesis statement. You should also discuss the implications of your research and suggest areas for future study.
  • Conclusion : This section should summarize your main findings and provide a final statement on the significance of your research.
  • References : This is a list of all the sources you cited in your paper, presented in alphabetical order by author name. Each citation should include the author’s name, the title of the source, the publication date, and other relevant information.

In addition to these sections, a Harvard Style research paper may also include a table of contents, appendices, and other supplementary materials as needed. It is important to follow the specific formatting guidelines provided by your instructor or academic institution when preparing your research paper in Harvard Style.

Vancouver Style

Vancouver Style Research Paper format is as follows:

The Vancouver citation style is commonly used in the biomedical sciences and is known for its use of numbered references. Here is a basic format for a research paper using the Vancouver citation style:

  • Title page: Include the title of your paper, your name, the name of your institution, and the date.
  • Abstract : This is a brief summary of your research paper, usually no more than 250 words.
  • Introduction : Provide some background information on your topic and state the purpose of your research.
  • Methods : Describe the methods you used to conduct your research, including the study design, data collection, and statistical analysis.
  • Results : Present your findings in a clear and concise manner, using tables and figures as needed.
  • Discussion : Interpret your results and explain their significance. Also, discuss any limitations of your study and suggest directions for future research.
  • References : List all of the sources you cited in your paper in numerical order. Each reference should include the author’s name, the title of the article or book, the name of the journal or publisher, the year of publication, and the page numbers.

ACS (American Chemical Society) Style

ACS (American Chemical Society) Style Research Paper format is as follows:

The American Chemical Society (ACS) Style is a citation style commonly used in chemistry and related fields. When formatting a research paper in ACS Style, here are some guidelines to follow:

  • Paper Size and Margins : Use standard 8.5″ x 11″ paper with 1-inch margins on all sides.
  • Font: Use a 12-point serif font (such as Times New Roman) for the main text. The title should be in bold and a larger font size.
  • Title Page : The title page should include the title of the paper, the authors’ names and affiliations, and the date of submission. The title should be centered on the page and written in bold font. The authors’ names should be centered below the title, followed by their affiliations and the date.
  • Abstract : The abstract should be a brief summary of the paper, no more than 250 words. It should be on a separate page and include the title of the paper, the authors’ names and affiliations, and the text of the abstract.
  • Main Text : The main text should be organized into sections with headings that clearly indicate the content of each section. The introduction should provide background information and state the research question or hypothesis. The methods section should describe the procedures used in the study. The results section should present the findings of the study, and the discussion section should interpret the results and provide conclusions.
  • References: Use the ACS Style guide to format the references cited in the paper. In-text citations should be numbered sequentially throughout the text and listed in numerical order at the end of the paper.
  • Figures and Tables: Figures and tables should be numbered sequentially and referenced in the text. Each should have a descriptive caption that explains its content. Figures should be submitted in a high-quality electronic format.
  • Supporting Information: Additional information such as data, graphs, and videos may be included as supporting information. This should be included in a separate file and referenced in the main text.
  • Acknowledgments : Acknowledge any funding sources or individuals who contributed to the research.

ASA (American Sociological Association) Style

ASA (American Sociological Association) Style Research Paper format is as follows:

  • Title Page: The title page of an ASA style research paper should include the title of the paper, the author’s name, and the institutional affiliation. The title should be centered and should be in title case (the first letter of each major word should be capitalized).
  • Abstract: An abstract is a brief summary of the paper that should appear on a separate page immediately following the title page. The abstract should be no more than 200 words in length and should summarize the main points of the paper.
  • Main Body: The main body of the paper should begin on a new page following the abstract page. The paper should be double-spaced, with 1-inch margins on all sides, and should be written in 12-point Times New Roman font. The main body of the paper should include an introduction, a literature review, a methodology section, results, and a discussion.
  • References : The reference section should appear on a separate page at the end of the paper. All sources cited in the paper should be listed in alphabetical order by the author’s last name. Each reference should include the author’s name, the title of the work, the publication information, and the date of publication.
  • Appendices : Appendices are optional and should only be included if they contain information that is relevant to the study but too lengthy to be included in the main body of the paper. If you include appendices, each one should be labeled with a letter (e.g., Appendix A, Appendix B, etc.) and should be referenced in the main body of the paper.

APSA (American Political Science Association) Style

APSA (American Political Science Association) Style Research Paper format is as follows:

  • Title Page: The title page should include the title of the paper, the author’s name, the name of the course or instructor, and the date.
  • Abstract : An abstract is typically not required in APSA style papers, but if one is included, it should be brief and summarize the main points of the paper.
  • Introduction : The introduction should provide an overview of the research topic, the research question, and the main argument or thesis of the paper.
  • Literature Review : The literature review should summarize the existing research on the topic and provide a context for the research question.
  • Methods : The methods section should describe the research methods used in the paper, including data collection and analysis.
  • Results : The results section should present the findings of the research.
  • Discussion : The discussion section should interpret the results and connect them back to the research question and argument.
  • Conclusion : The conclusion should summarize the main findings and implications of the research.
  • References : The reference list should include all sources cited in the paper, formatted according to APSA style guidelines.

In-text citations in APSA style use parenthetical citation, which includes the author’s last name, publication year, and page number(s) if applicable. For example, (Smith 2010, 25).

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

Appendices

Appendices – Writing Guide, Types and Examples

Research Paper Citation

How to Cite Research Paper – All Formats and...

Delimitations

Delimitations in Research – Types, Examples and...

Scope of the Research

Scope of the Research – Writing Guide and...

Research Contribution

Research Contribution – Thesis Guide

How to Write a Research Paper Introduction (with Examples)

How to Write a Research Paper Introduction (with Examples)

The research paper introduction section, along with the Title and Abstract, can be considered the face of any research paper. The following article is intended to guide you in organizing and writing the research paper introduction for a quality academic article or dissertation.

The research paper introduction aims to present the topic to the reader. A study will only be accepted for publishing if you can ascertain that the available literature cannot answer your research question. So it is important to ensure that you have read important studies on that particular topic, especially those within the last five to ten years, and that they are properly referenced in this section. 1 What should be included in the research paper introduction is decided by what you want to tell readers about the reason behind the research and how you plan to fill the knowledge gap. The best research paper introduction provides a systemic review of existing work and demonstrates additional work that needs to be done. It needs to be brief, captivating, and well-referenced; a well-drafted research paper introduction will help the researcher win half the battle.

The introduction for a research paper is where you set up your topic and approach for the reader. It has several key goals:

  • Present your research topic
  • Capture reader interest
  • Summarize existing research
  • Position your own approach
  • Define your specific research problem and problem statement
  • Highlight the novelty and contributions of the study
  • Give an overview of the paper’s structure

The research paper introduction can vary in size and structure depending on whether your paper presents the results of original empirical research or is a review paper. Some research paper introduction examples are only half a page while others are a few pages long. In many cases, the introduction will be shorter than all of the other sections of your paper; its length depends on the size of your paper as a whole.

  • Break through writer’s block. Write your research paper introduction with Paperpal Copilot

Table of Contents

What is the introduction for a research paper, why is the introduction important in a research paper, craft a compelling introduction section with paperpal. try now, 1. introduce the research topic:, 2. determine a research niche:, 3. place your research within the research niche:, craft accurate research paper introductions with paperpal. start writing now, frequently asked questions on research paper introduction, key points to remember.

The introduction in a research paper is placed at the beginning to guide the reader from a broad subject area to the specific topic that your research addresses. They present the following information to the reader

  • Scope: The topic covered in the research paper
  • Context: Background of your topic
  • Importance: Why your research matters in that particular area of research and the industry problem that can be targeted

The research paper introduction conveys a lot of information and can be considered an essential roadmap for the rest of your paper. A good introduction for a research paper is important for the following reasons:

  • It stimulates your reader’s interest: A good introduction section can make your readers want to read your paper by capturing their interest. It informs the reader what they are going to learn and helps determine if the topic is of interest to them.
  • It helps the reader understand the research background: Without a clear introduction, your readers may feel confused and even struggle when reading your paper. A good research paper introduction will prepare them for the in-depth research to come. It provides you the opportunity to engage with the readers and demonstrate your knowledge and authority on the specific topic.
  • It explains why your research paper is worth reading: Your introduction can convey a lot of information to your readers. It introduces the topic, why the topic is important, and how you plan to proceed with your research.
  • It helps guide the reader through the rest of the paper: The research paper introduction gives the reader a sense of the nature of the information that will support your arguments and the general organization of the paragraphs that will follow. It offers an overview of what to expect when reading the main body of your paper.

What are the parts of introduction in the research?

A good research paper introduction section should comprise three main elements: 2

  • What is known: This sets the stage for your research. It informs the readers of what is known on the subject.
  • What is lacking: This is aimed at justifying the reason for carrying out your research. This could involve investigating a new concept or method or building upon previous research.
  • What you aim to do: This part briefly states the objectives of your research and its major contributions. Your detailed hypothesis will also form a part of this section.

How to write a research paper introduction?

The first step in writing the research paper introduction is to inform the reader what your topic is and why it’s interesting or important. This is generally accomplished with a strong opening statement. The second step involves establishing the kinds of research that have been done and ending with limitations or gaps in the research that you intend to address. Finally, the research paper introduction clarifies how your own research fits in and what problem it addresses. If your research involved testing hypotheses, these should be stated along with your research question. The hypothesis should be presented in the past tense since it will have been tested by the time you are writing the research paper introduction.

The following key points, with examples, can guide you when writing the research paper introduction section:

  • Highlight the importance of the research field or topic
  • Describe the background of the topic
  • Present an overview of current research on the topic

Example: The inclusion of experiential and competency-based learning has benefitted electronics engineering education. Industry partnerships provide an excellent alternative for students wanting to engage in solving real-world challenges. Industry-academia participation has grown in recent years due to the need for skilled engineers with practical training and specialized expertise. However, from the educational perspective, many activities are needed to incorporate sustainable development goals into the university curricula and consolidate learning innovation in universities.

  • Reveal a gap in existing research or oppose an existing assumption
  • Formulate the research question

Example: There have been plausible efforts to integrate educational activities in higher education electronics engineering programs. However, very few studies have considered using educational research methods for performance evaluation of competency-based higher engineering education, with a focus on technical and or transversal skills. To remedy the current need for evaluating competencies in STEM fields and providing sustainable development goals in engineering education, in this study, a comparison was drawn between study groups without and with industry partners.

  • State the purpose of your study
  • Highlight the key characteristics of your study
  • Describe important results
  • Highlight the novelty of the study.
  • Offer a brief overview of the structure of the paper.

Example: The study evaluates the main competency needed in the applied electronics course, which is a fundamental core subject for many electronics engineering undergraduate programs. We compared two groups, without and with an industrial partner, that offered real-world projects to solve during the semester. This comparison can help determine significant differences in both groups in terms of developing subject competency and achieving sustainable development goals.

Write a Research Paper Introduction in Minutes with Paperpal

Paperpal Copilot is a generative AI-powered academic writing assistant. It’s trained on millions of published scholarly articles and over 20 years of STM experience. Paperpal Copilot helps authors write better and faster with:

  • Real-time writing suggestions
  • In-depth checks for language and grammar correction
  • Paraphrasing to add variety, ensure academic tone, and trim text to meet journal limits

With Paperpal Copilot, create a research paper introduction effortlessly. In this step-by-step guide, we’ll walk you through how Paperpal transforms your initial ideas into a polished and publication-ready introduction.

paper research example

How to use Paperpal to write the Introduction section

Step 1: Sign up on Paperpal and click on the Copilot feature, under this choose Outlines > Research Article > Introduction

Step 2: Add your unstructured notes or initial draft, whether in English or another language, to Paperpal, which is to be used as the base for your content.

Step 3: Fill in the specifics, such as your field of study, brief description or details you want to include, which will help the AI generate the outline for your Introduction.

Step 4: Use this outline and sentence suggestions to develop your content, adding citations where needed and modifying it to align with your specific research focus.

Step 5: Turn to Paperpal’s granular language checks to refine your content, tailor it to reflect your personal writing style, and ensure it effectively conveys your message.

You can use the same process to develop each section of your article, and finally your research paper in half the time and without any of the stress.

The purpose of the research paper introduction is to introduce the reader to the problem definition, justify the need for the study, and describe the main theme of the study. The aim is to gain the reader’s attention by providing them with necessary background information and establishing the main purpose and direction of the research.

The length of the research paper introduction can vary across journals and disciplines. While there are no strict word limits for writing the research paper introduction, an ideal length would be one page, with a maximum of 400 words over 1-4 paragraphs. Generally, it is one of the shorter sections of the paper as the reader is assumed to have at least a reasonable knowledge about the topic. 2 For example, for a study evaluating the role of building design in ensuring fire safety, there is no need to discuss definitions and nature of fire in the introduction; you could start by commenting upon the existing practices for fire safety and how your study will add to the existing knowledge and practice.

When deciding what to include in the research paper introduction, the rest of the paper should also be considered. The aim is to introduce the reader smoothly to the topic and facilitate an easy read without much dependency on external sources. 3 Below is a list of elements you can include to prepare a research paper introduction outline and follow it when you are writing the research paper introduction. Topic introduction: This can include key definitions and a brief history of the topic. Research context and background: Offer the readers some general information and then narrow it down to specific aspects. Details of the research you conducted: A brief literature review can be included to support your arguments or line of thought. Rationale for the study: This establishes the relevance of your study and establishes its importance. Importance of your research: The main contributions are highlighted to help establish the novelty of your study Research hypothesis: Introduce your research question and propose an expected outcome. Organization of the paper: Include a short paragraph of 3-4 sentences that highlights your plan for the entire paper

Cite only works that are most relevant to your topic; as a general rule, you can include one to three. Note that readers want to see evidence of original thinking. So it is better to avoid using too many references as it does not leave much room for your personal standpoint to shine through. Citations in your research paper introduction support the key points, and the number of citations depend on the subject matter and the point discussed. If the research paper introduction is too long or overflowing with citations, it is better to cite a few review articles rather than the individual articles summarized in the review. A good point to remember when citing research papers in the introduction section is to include at least one-third of the references in the introduction.

The literature review plays a significant role in the research paper introduction section. A good literature review accomplishes the following: Introduces the topic – Establishes the study’s significance – Provides an overview of the relevant literature – Provides context for the study using literature – Identifies knowledge gaps However, remember to avoid making the following mistakes when writing a research paper introduction: Do not use studies from the literature review to aggressively support your research Avoid direct quoting Do not allow literature review to be the focus of this section. Instead, the literature review should only aid in setting a foundation for the manuscript.

Remember the following key points for writing a good research paper introduction: 4

  • Avoid stuffing too much general information: Avoid including what an average reader would know and include only that information related to the problem being addressed in the research paper introduction. For example, when describing a comparative study of non-traditional methods for mechanical design optimization, information related to the traditional methods and differences between traditional and non-traditional methods would not be relevant. In this case, the introduction for the research paper should begin with the state-of-the-art non-traditional methods and methods to evaluate the efficiency of newly developed algorithms.
  • Avoid packing too many references: Cite only the required works in your research paper introduction. The other works can be included in the discussion section to strengthen your findings.
  • Avoid extensive criticism of previous studies: Avoid being overly critical of earlier studies while setting the rationale for your study. A better place for this would be the Discussion section, where you can highlight the advantages of your method.
  • Avoid describing conclusions of the study: When writing a research paper introduction remember not to include the findings of your study. The aim is to let the readers know what question is being answered. The actual answer should only be given in the Results and Discussion section.

To summarize, the research paper introduction section should be brief yet informative. It should convince the reader the need to conduct the study and motivate him to read further. If you’re feeling stuck or unsure, choose trusted AI academic writing assistants like Paperpal to effortlessly craft your research paper introduction and other sections of your research article.

1. Jawaid, S. A., & Jawaid, M. (2019). How to write introduction and discussion. Saudi Journal of Anaesthesia, 13(Suppl 1), S18.

2. Dewan, P., & Gupta, P. (2016). Writing the title, abstract and introduction: Looks matter!. Indian pediatrics, 53, 235-241.

3. Cetin, S., & Hackam, D. J. (2005). An approach to the writing of a scientific Manuscript1. Journal of Surgical Research, 128(2), 165-167.

4. Bavdekar, S. B. (2015). Writing introduction: Laying the foundations of a research paper. Journal of the Association of Physicians of India, 63(7), 44-6.

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Scientific Writing Style Guides Explained
  • 5 Reasons for Rejection After Peer Review
  • Ethical Research Practices For Research with Human Subjects
  • 8 Most Effective Ways to Increase Motivation for Thesis Writing 

Practice vs. Practise: Learn the Difference

Academic paraphrasing: why paperpal’s rewrite should be your first choice , you may also like, how to make translating academic papers less challenging, self-plagiarism in research: what it is and how..., 6 tips for post-doc researchers to take their..., presenting research data effectively through tables and figures, ethics in science: importance, principles & guidelines , jenni ai review: top features, pricing, and alternatives, 8 most effective ways to increase motivation for..., how to make your thesis supervision work for..., publish or perish – understanding the importance of..., what next after manuscript rejection 5 options for....

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, 113 great research paper topics.

author image

General Education

feature_pencilpaper

One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily find the best topic for you.

In addition to the list of good research topics, we've included advice on what makes a good research paper topic and how you can use your topic to start writing a great paper.

What Makes a Good Research Paper Topic?

Not all research paper topics are created equal, and you want to make sure you choose a great topic before you start writing. Below are the three most important factors to consider to make sure you choose the best research paper topics.

#1: It's Something You're Interested In

A paper is always easier to write if you're interested in the topic, and you'll be more motivated to do in-depth research and write a paper that really covers the entire subject. Even if a certain research paper topic is getting a lot of buzz right now or other people seem interested in writing about it, don't feel tempted to make it your topic unless you genuinely have some sort of interest in it as well.

#2: There's Enough Information to Write a Paper

Even if you come up with the absolute best research paper topic and you're so excited to write about it, you won't be able to produce a good paper if there isn't enough research about the topic. This can happen for very specific or specialized topics, as well as topics that are too new to have enough research done on them at the moment. Easy research paper topics will always be topics with enough information to write a full-length paper.

Trying to write a research paper on a topic that doesn't have much research on it is incredibly hard, so before you decide on a topic, do a bit of preliminary searching and make sure you'll have all the information you need to write your paper.

#3: It Fits Your Teacher's Guidelines

Don't get so carried away looking at lists of research paper topics that you forget any requirements or restrictions your teacher may have put on research topic ideas. If you're writing a research paper on a health-related topic, deciding to write about the impact of rap on the music scene probably won't be allowed, but there may be some sort of leeway. For example, if you're really interested in current events but your teacher wants you to write a research paper on a history topic, you may be able to choose a topic that fits both categories, like exploring the relationship between the US and North Korea. No matter what, always get your research paper topic approved by your teacher first before you begin writing.

113 Good Research Paper Topics

Below are 113 good research topics to help you get you started on your paper. We've organized them into ten categories to make it easier to find the type of research paper topics you're looking for.

Arts/Culture

  • Discuss the main differences in art from the Italian Renaissance and the Northern Renaissance .
  • Analyze the impact a famous artist had on the world.
  • How is sexism portrayed in different types of media (music, film, video games, etc.)? Has the amount/type of sexism changed over the years?
  • How has the music of slaves brought over from Africa shaped modern American music?
  • How has rap music evolved in the past decade?
  • How has the portrayal of minorities in the media changed?

music-277279_640

Current Events

  • What have been the impacts of China's one child policy?
  • How have the goals of feminists changed over the decades?
  • How has the Trump presidency changed international relations?
  • Analyze the history of the relationship between the United States and North Korea.
  • What factors contributed to the current decline in the rate of unemployment?
  • What have been the impacts of states which have increased their minimum wage?
  • How do US immigration laws compare to immigration laws of other countries?
  • How have the US's immigration laws changed in the past few years/decades?
  • How has the Black Lives Matter movement affected discussions and view about racism in the US?
  • What impact has the Affordable Care Act had on healthcare in the US?
  • What factors contributed to the UK deciding to leave the EU (Brexit)?
  • What factors contributed to China becoming an economic power?
  • Discuss the history of Bitcoin or other cryptocurrencies  (some of which tokenize the S&P 500 Index on the blockchain) .
  • Do students in schools that eliminate grades do better in college and their careers?
  • Do students from wealthier backgrounds score higher on standardized tests?
  • Do students who receive free meals at school get higher grades compared to when they weren't receiving a free meal?
  • Do students who attend charter schools score higher on standardized tests than students in public schools?
  • Do students learn better in same-sex classrooms?
  • How does giving each student access to an iPad or laptop affect their studies?
  • What are the benefits and drawbacks of the Montessori Method ?
  • Do children who attend preschool do better in school later on?
  • What was the impact of the No Child Left Behind act?
  • How does the US education system compare to education systems in other countries?
  • What impact does mandatory physical education classes have on students' health?
  • Which methods are most effective at reducing bullying in schools?
  • Do homeschoolers who attend college do as well as students who attended traditional schools?
  • Does offering tenure increase or decrease quality of teaching?
  • How does college debt affect future life choices of students?
  • Should graduate students be able to form unions?

body_highschoolsc

  • What are different ways to lower gun-related deaths in the US?
  • How and why have divorce rates changed over time?
  • Is affirmative action still necessary in education and/or the workplace?
  • Should physician-assisted suicide be legal?
  • How has stem cell research impacted the medical field?
  • How can human trafficking be reduced in the United States/world?
  • Should people be able to donate organs in exchange for money?
  • Which types of juvenile punishment have proven most effective at preventing future crimes?
  • Has the increase in US airport security made passengers safer?
  • Analyze the immigration policies of certain countries and how they are similar and different from one another.
  • Several states have legalized recreational marijuana. What positive and negative impacts have they experienced as a result?
  • Do tariffs increase the number of domestic jobs?
  • Which prison reforms have proven most effective?
  • Should governments be able to censor certain information on the internet?
  • Which methods/programs have been most effective at reducing teen pregnancy?
  • What are the benefits and drawbacks of the Keto diet?
  • How effective are different exercise regimes for losing weight and maintaining weight loss?
  • How do the healthcare plans of various countries differ from each other?
  • What are the most effective ways to treat depression ?
  • What are the pros and cons of genetically modified foods?
  • Which methods are most effective for improving memory?
  • What can be done to lower healthcare costs in the US?
  • What factors contributed to the current opioid crisis?
  • Analyze the history and impact of the HIV/AIDS epidemic .
  • Are low-carbohydrate or low-fat diets more effective for weight loss?
  • How much exercise should the average adult be getting each week?
  • Which methods are most effective to get parents to vaccinate their children?
  • What are the pros and cons of clean needle programs?
  • How does stress affect the body?
  • Discuss the history of the conflict between Israel and the Palestinians.
  • What were the causes and effects of the Salem Witch Trials?
  • Who was responsible for the Iran-Contra situation?
  • How has New Orleans and the government's response to natural disasters changed since Hurricane Katrina?
  • What events led to the fall of the Roman Empire?
  • What were the impacts of British rule in India ?
  • Was the atomic bombing of Hiroshima and Nagasaki necessary?
  • What were the successes and failures of the women's suffrage movement in the United States?
  • What were the causes of the Civil War?
  • How did Abraham Lincoln's assassination impact the country and reconstruction after the Civil War?
  • Which factors contributed to the colonies winning the American Revolution?
  • What caused Hitler's rise to power?
  • Discuss how a specific invention impacted history.
  • What led to Cleopatra's fall as ruler of Egypt?
  • How has Japan changed and evolved over the centuries?
  • What were the causes of the Rwandan genocide ?

main_lincoln

  • Why did Martin Luther decide to split with the Catholic Church?
  • Analyze the history and impact of a well-known cult (Jonestown, Manson family, etc.)
  • How did the sexual abuse scandal impact how people view the Catholic Church?
  • How has the Catholic church's power changed over the past decades/centuries?
  • What are the causes behind the rise in atheism/ agnosticism in the United States?
  • What were the influences in Siddhartha's life resulted in him becoming the Buddha?
  • How has media portrayal of Islam/Muslims changed since September 11th?

Science/Environment

  • How has the earth's climate changed in the past few decades?
  • How has the use and elimination of DDT affected bird populations in the US?
  • Analyze how the number and severity of natural disasters have increased in the past few decades.
  • Analyze deforestation rates in a certain area or globally over a period of time.
  • How have past oil spills changed regulations and cleanup methods?
  • How has the Flint water crisis changed water regulation safety?
  • What are the pros and cons of fracking?
  • What impact has the Paris Climate Agreement had so far?
  • What have NASA's biggest successes and failures been?
  • How can we improve access to clean water around the world?
  • Does ecotourism actually have a positive impact on the environment?
  • Should the US rely on nuclear energy more?
  • What can be done to save amphibian species currently at risk of extinction?
  • What impact has climate change had on coral reefs?
  • How are black holes created?
  • Are teens who spend more time on social media more likely to suffer anxiety and/or depression?
  • How will the loss of net neutrality affect internet users?
  • Analyze the history and progress of self-driving vehicles.
  • How has the use of drones changed surveillance and warfare methods?
  • Has social media made people more or less connected?
  • What progress has currently been made with artificial intelligence ?
  • Do smartphones increase or decrease workplace productivity?
  • What are the most effective ways to use technology in the classroom?
  • How is Google search affecting our intelligence?
  • When is the best age for a child to begin owning a smartphone?
  • Has frequent texting reduced teen literacy rates?

body_iphone2

How to Write a Great Research Paper

Even great research paper topics won't give you a great research paper if you don't hone your topic before and during the writing process. Follow these three tips to turn good research paper topics into great papers.

#1: Figure Out Your Thesis Early

Before you start writing a single word of your paper, you first need to know what your thesis will be. Your thesis is a statement that explains what you intend to prove/show in your paper. Every sentence in your research paper will relate back to your thesis, so you don't want to start writing without it!

As some examples, if you're writing a research paper on if students learn better in same-sex classrooms, your thesis might be "Research has shown that elementary-age students in same-sex classrooms score higher on standardized tests and report feeling more comfortable in the classroom."

If you're writing a paper on the causes of the Civil War, your thesis might be "While the dispute between the North and South over slavery is the most well-known cause of the Civil War, other key causes include differences in the economies of the North and South, states' rights, and territorial expansion."

#2: Back Every Statement Up With Research

Remember, this is a research paper you're writing, so you'll need to use lots of research to make your points. Every statement you give must be backed up with research, properly cited the way your teacher requested. You're allowed to include opinions of your own, but they must also be supported by the research you give.

#3: Do Your Research Before You Begin Writing

You don't want to start writing your research paper and then learn that there isn't enough research to back up the points you're making, or, even worse, that the research contradicts the points you're trying to make!

Get most of your research on your good research topics done before you begin writing. Then use the research you've collected to create a rough outline of what your paper will cover and the key points you're going to make. This will help keep your paper clear and organized, and it'll ensure you have enough research to produce a strong paper.

What's Next?

Are you also learning about dynamic equilibrium in your science class? We break this sometimes tricky concept down so it's easy to understand in our complete guide to dynamic equilibrium .

Thinking about becoming a nurse practitioner? Nurse practitioners have one of the fastest growing careers in the country, and we have all the information you need to know about what to expect from nurse practitioner school .

Want to know the fastest and easiest ways to convert between Fahrenheit and Celsius? We've got you covered! Check out our guide to the best ways to convert Celsius to Fahrenheit (or vice versa).

Need more help with this topic? Check out Tutorbase!

Our vetted tutor database includes a range of experienced educators who can help you polish an essay for English or explain how derivatives work for Calculus. You can use dozens of filters and search criteria to find the perfect person for your needs.

Connect With a Tutor Now

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

author image

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Student and Parent Forum

Our new student and parent forum, at ExpertHub.PrepScholar.com , allow you to interact with your peers and the PrepScholar staff. See how other students and parents are navigating high school, college, and the college admissions process. Ask questions; get answers.

Join the Conversation

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

paper research example

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”
  • Systematic review
  • Open access
  • Published: 19 February 2024

‘It depends’: what 86 systematic reviews tell us about what strategies to use to support the use of research in clinical practice

  • Annette Boaz   ORCID: orcid.org/0000-0003-0557-1294 1 ,
  • Juan Baeza 2 ,
  • Alec Fraser   ORCID: orcid.org/0000-0003-1121-1551 2 &
  • Erik Persson 3  

Implementation Science volume  19 , Article number:  15 ( 2024 ) Cite this article

1758 Accesses

68 Altmetric

Metrics details

The gap between research findings and clinical practice is well documented and a range of strategies have been developed to support the implementation of research into clinical practice. The objective of this study was to update and extend two previous reviews of systematic reviews of strategies designed to implement research evidence into clinical practice.

We developed a comprehensive systematic literature search strategy based on the terms used in the previous reviews to identify studies that looked explicitly at interventions designed to turn research evidence into practice. The search was performed in June 2022 in four electronic databases: Medline, Embase, Cochrane and Epistemonikos. We searched from January 2010 up to June 2022 and applied no language restrictions. Two independent reviewers appraised the quality of included studies using a quality assessment checklist. To reduce the risk of bias, papers were excluded following discussion between all members of the team. Data were synthesised using descriptive and narrative techniques to identify themes and patterns linked to intervention strategies, targeted behaviours, study settings and study outcomes.

We identified 32 reviews conducted between 2010 and 2022. The reviews are mainly of multi-faceted interventions ( n  = 20) although there are reviews focusing on single strategies (ICT, educational, reminders, local opinion leaders, audit and feedback, social media and toolkits). The majority of reviews report strategies achieving small impacts (normally on processes of care). There is much less evidence that these strategies have shifted patient outcomes. Furthermore, a lot of nuance lies behind these headline findings, and this is increasingly commented upon in the reviews themselves.

Combined with the two previous reviews, 86 systematic reviews of strategies to increase the implementation of research into clinical practice have been identified. We need to shift the emphasis away from isolating individual and multi-faceted interventions to better understanding and building more situated, relational and organisational capability to support the use of research in clinical practice. This will involve drawing on a wider range of research perspectives (including social science) in primary studies and diversifying the types of synthesis undertaken to include approaches such as realist synthesis which facilitate exploration of the context in which strategies are employed.

Peer Review reports

Contribution to the literature

Considerable time and money is invested in implementing and evaluating strategies to increase the implementation of research into clinical practice.

The growing body of evidence is not providing the anticipated clear lessons to support improved implementation.

Instead what is needed is better understanding and building more situated, relational and organisational capability to support the use of research in clinical practice.

This would involve a more central role in implementation science for a wider range of perspectives, especially from the social, economic, political and behavioural sciences and for greater use of different types of synthesis, such as realist synthesis.

Introduction

The gap between research findings and clinical practice is well documented and a range of interventions has been developed to increase the implementation of research into clinical practice [ 1 , 2 ]. In recent years researchers have worked to improve the consistency in the ways in which these interventions (often called strategies) are described to support their evaluation. One notable development has been the emergence of Implementation Science as a field focusing explicitly on “the scientific study of methods to promote the systematic uptake of research findings and other evidence-based practices into routine practice” ([ 3 ] p. 1). The work of implementation science focuses on closing, or at least narrowing, the gap between research and practice. One contribution has been to map existing interventions, identifying 73 discreet strategies to support research implementation [ 4 ] which have been grouped into 9 clusters [ 5 ]. The authors note that they have not considered the evidence of effectiveness of the individual strategies and that a next step is to understand better which strategies perform best in which combinations and for what purposes [ 4 ]. Other authors have noted that there is also scope to learn more from other related fields of study such as policy implementation [ 6 ] and to draw on methods designed to support the evaluation of complex interventions [ 7 ].

The increase in activity designed to support the implementation of research into practice and improvements in reporting provided the impetus for an update of a review of systematic reviews of the effectiveness of interventions designed to support the use of research in clinical practice [ 8 ] which was itself an update of the review conducted by Grimshaw and colleagues in 2001. The 2001 review [ 9 ] identified 41 reviews considering a range of strategies including educational interventions, audit and feedback, computerised decision support to financial incentives and combined interventions. The authors concluded that all the interventions had the potential to promote the uptake of evidence in practice, although no one intervention seemed to be more effective than the others in all settings. They concluded that combined interventions were more likely to be effective than single interventions. The 2011 review identified a further 13 systematic reviews containing 313 discrete primary studies. Consistent with the previous review, four main strategy types were identified: audit and feedback; computerised decision support; opinion leaders; and multi-faceted interventions (MFIs). Nine of the reviews reported on MFIs. The review highlighted the small effects of single interventions such as audit and feedback, computerised decision support and opinion leaders. MFIs claimed an improvement in effectiveness over single interventions, although effect sizes remained small to moderate and this improvement in effectiveness relating to MFIs has been questioned in a subsequent review [ 10 ]. In updating the review, we anticipated a larger pool of reviews and an opportunity to consolidate learning from more recent systematic reviews of interventions.

This review updates and extends our previous review of systematic reviews of interventions designed to implement research evidence into clinical practice. To identify potentially relevant peer-reviewed research papers, we developed a comprehensive systematic literature search strategy based on the terms used in the Grimshaw et al. [ 9 ] and Boaz, Baeza and Fraser [ 8 ] overview articles. To ensure optimal retrieval, our search strategy was refined with support from an expert university librarian, considering the ongoing improvements in the development of search filters for systematic reviews since our first review [ 11 ]. We also wanted to include technology-related terms (e.g. apps, algorithms, machine learning, artificial intelligence) to find studies that explored interventions based on the use of technological innovations as mechanistic tools for increasing the use of evidence into practice (see Additional file 1 : Appendix A for full search strategy).

The search was performed in June 2022 in the following electronic databases: Medline, Embase, Cochrane and Epistemonikos. We searched for articles published since the 2011 review. We searched from January 2010 up to June 2022 and applied no language restrictions. Reference lists of relevant papers were also examined.

We uploaded the results using EPPI-Reviewer, a web-based tool that facilitated semi-automation of the screening process and removal of duplicate studies. We made particular use of a priority screening function to reduce screening workload and avoid ‘data deluge’ [ 12 ]. Through machine learning, one reviewer screened a smaller number of records ( n  = 1200) to train the software to predict whether a given record was more likely to be relevant or irrelevant, thus pulling the relevant studies towards the beginning of the screening process. This automation did not replace manual work but helped the reviewer to identify eligible studies more quickly. During the selection process, we included studies that looked explicitly at interventions designed to turn research evidence into practice. Studies were included if they met the following pre-determined inclusion criteria:

The study was a systematic review

Search terms were included

Focused on the implementation of research evidence into practice

The methodological quality of the included studies was assessed as part of the review

Study populations included healthcare providers and patients. The EPOC taxonomy [ 13 ] was used to categorise the strategies. The EPOC taxonomy has four domains: delivery arrangements, financial arrangements, governance arrangements and implementation strategies. The implementation strategies domain includes 20 strategies targeted at healthcare workers. Numerous EPOC strategies were assessed in the review including educational strategies, local opinion leaders, reminders, ICT-focused approaches and audit and feedback. Some strategies that did not fit easily within the EPOC categories were also included. These were social media strategies and toolkits, and multi-faceted interventions (MFIs) (see Table  2 ). Some systematic reviews included comparisons of different interventions while other reviews compared one type of intervention against a control group. Outcomes related to improvements in health care processes or patient well-being. Numerous individual study types (RCT, CCT, BA, ITS) were included within the systematic reviews.

We excluded papers that:

Focused on changing patient rather than provider behaviour

Had no demonstrable outcomes

Made unclear or no reference to research evidence

The last of these criteria was sometimes difficult to judge, and there was considerable discussion amongst the research team as to whether the link between research evidence and practice was sufficiently explicit in the interventions analysed. As we discussed in the previous review [ 8 ] in the field of healthcare, the principle of evidence-based practice is widely acknowledged and tools to change behaviour such as guidelines are often seen to be an implicit codification of evidence, despite the fact that this is not always the case.

Reviewers employed a two-stage process to select papers for inclusion. First, all titles and abstracts were screened by one reviewer to determine whether the study met the inclusion criteria. Two papers [ 14 , 15 ] were identified that fell just before the 2010 cut-off. As they were not identified in the searches for the first review [ 8 ] they were included and progressed to assessment. Each paper was rated as include, exclude or maybe. The full texts of 111 relevant papers were assessed independently by at least two authors. To reduce the risk of bias, papers were excluded following discussion between all members of the team. 32 papers met the inclusion criteria and proceeded to data extraction. The study selection procedure is documented in a PRISMA literature flow diagram (see Fig.  1 ). We were able to include French, Spanish and Portuguese papers in the selection reflecting the language skills in the study team, but none of the papers identified met the inclusion criteria. Other non- English language papers were excluded.

figure 1

PRISMA flow diagram. Source: authors

One reviewer extracted data on strategy type, number of included studies, local, target population, effectiveness and scope of impact from the included studies. Two reviewers then independently read each paper and noted key findings and broad themes of interest which were then discussed amongst the wider authorial team. Two independent reviewers appraised the quality of included studies using a Quality Assessment Checklist based on Oxman and Guyatt [ 16 ] and Francke et al. [ 17 ]. Each study was rated a quality score ranging from 1 (extensive flaws) to 7 (minimal flaws) (see Additional file 2 : Appendix B). All disagreements were resolved through discussion. Studies were not excluded in this updated overview based on methodological quality as we aimed to reflect the full extent of current research into this topic.

The extracted data were synthesised using descriptive and narrative techniques to identify themes and patterns in the data linked to intervention strategies, targeted behaviours, study settings and study outcomes.

Thirty-two studies were included in the systematic review. Table 1. provides a detailed overview of the included systematic reviews comprising reference, strategy type, quality score, number of included studies, local, target population, effectiveness and scope of impact (see Table  1. at the end of the manuscript). Overall, the quality of the studies was high. Twenty-three studies scored 7, six studies scored 6, one study scored 5, one study scored 4 and one study scored 3. The primary focus of the review was on reviews of effectiveness studies, but a small number of reviews did include data from a wider range of methods including qualitative studies which added to the analysis in the papers [ 18 , 19 , 20 , 21 ]. The majority of reviews report strategies achieving small impacts (normally on processes of care). There is much less evidence that these strategies have shifted patient outcomes. In this section, we discuss the different EPOC-defined implementation strategies in turn. Interestingly, we found only two ‘new’ approaches in this review that did not fit into the existing EPOC approaches. These are a review focused on the use of social media and a review considering toolkits. In addition to single interventions, we also discuss multi-faceted interventions. These were the most common intervention approach overall. A summary is provided in Table  2 .

Educational strategies

The overview identified three systematic reviews focusing on educational strategies. Grudniewicz et al. [ 22 ] explored the effectiveness of printed educational materials on primary care physician knowledge, behaviour and patient outcomes and concluded they were not effective in any of these aspects. Koota, Kääriäinen and Melender [ 23 ] focused on educational interventions promoting evidence-based practice among emergency room/accident and emergency nurses and found that interventions involving face-to-face contact led to significant or highly significant effects on patient benefits and emergency nurses’ knowledge, skills and behaviour. Interventions using written self-directed learning materials also led to significant improvements in nurses’ knowledge of evidence-based practice. Although the quality of the studies was high, the review primarily included small studies with low response rates, and many of them relied on self-assessed outcomes; consequently, the strength of the evidence for these outcomes is modest. Wu et al. [ 20 ] questioned if educational interventions aimed at nurses to support the implementation of evidence-based practice improve patient outcomes. Although based on evaluation projects and qualitative data, their results also suggest that positive changes on patient outcomes can be made following the implementation of specific evidence-based approaches (or projects). The differing positive outcomes for educational strategies aimed at nurses might indicate that the target audience is important.

Local opinion leaders

Flodgren et al. [ 24 ] was the only systemic review focusing solely on opinion leaders. The review found that local opinion leaders alone, or in combination with other interventions, can be effective in promoting evidence‐based practice, but this varies both within and between studies and the effect on patient outcomes is uncertain. The review found that, overall, any intervention involving opinion leaders probably improves healthcare professionals’ compliance with evidence-based practice but varies within and across studies. However, how opinion leaders had an impact could not be determined because of insufficient details were provided, illustrating that reporting specific details in published studies is important if diffusion of effective methods of increasing evidence-based practice is to be spread across a system. The usefulness of this review is questionable because it cannot provide evidence of what is an effective opinion leader, whether teams of opinion leaders or a single opinion leader are most effective, or the most effective methods used by opinion leaders.

Pantoja et al. [ 26 ] was the only systemic review focusing solely on manually generated reminders delivered on paper included in the overview. The review explored how these affected professional practice and patient outcomes. The review concluded that manually generated reminders delivered on paper as a single intervention probably led to small to moderate increases in adherence to clinical recommendations, and they could be used as a single quality improvement intervention. However, the authors indicated that this intervention would make little or no difference to patient outcomes. The authors state that such a low-tech intervention may be useful in low- and middle-income countries where paper records are more likely to be the norm.

ICT-focused approaches

The three ICT-focused reviews [ 14 , 27 , 28 ] showed mixed results. Jamal, McKenzie and Clark [ 14 ] explored the impact of health information technology on the quality of medical and health care. They examined the impact of electronic health record, computerised provider order-entry, or decision support system. This showed a positive improvement in adherence to evidence-based guidelines but not to patient outcomes. The number of studies included in the review was low and so a conclusive recommendation could not be reached based on this review. Similarly, Brown et al. [ 28 ] found that technology-enabled knowledge translation interventions may improve knowledge of health professionals, but all eight studies raised concerns of bias. The De Angelis et al. [ 27 ] review was more promising, reporting that ICT can be a good way of disseminating clinical practice guidelines but conclude that it is unclear which type of ICT method is the most effective.

Audit and feedback

Sykes, McAnuff and Kolehmainen [ 29 ] examined whether audit and feedback were effective in dementia care and concluded that it remains unclear which ingredients of audit and feedback are successful as the reviewed papers illustrated large variations in the effectiveness of interventions using audit and feedback.

Non-EPOC listed strategies: social media, toolkits

There were two new (non-EPOC listed) intervention types identified in this review compared to the 2011 review — fewer than anticipated. We categorised a third — ‘care bundles’ [ 36 ] as a multi-faceted intervention due to its description in practice and a fourth — ‘Technology Enhanced Knowledge Transfer’ [ 28 ] was classified as an ICT-focused approach. The first new strategy was identified in Bhatt et al.’s [ 30 ] systematic review of the use of social media for the dissemination of clinical practice guidelines. They reported that the use of social media resulted in a significant improvement in knowledge and compliance with evidence-based guidelines compared with more traditional methods. They noted that a wide selection of different healthcare professionals and patients engaged with this type of social media and its global reach may be significant for low- and middle-income countries. This review was also noteworthy for developing a simple stepwise method for using social media for the dissemination of clinical practice guidelines. However, it is debatable whether social media can be classified as an intervention or just a different way of delivering an intervention. For example, the review discussed involving opinion leaders and patient advocates through social media. However, this was a small review that included only five studies, so further research in this new area is needed. Yamada et al. [ 31 ] draw on 39 studies to explore the application of toolkits, 18 of which had toolkits embedded within larger KT interventions, and 21 of which evaluated toolkits as standalone interventions. The individual component strategies of the toolkits were highly variable though the authors suggest that they align most closely with educational strategies. The authors conclude that toolkits as either standalone strategies or as part of MFIs hold some promise for facilitating evidence use in practice but caution that the quality of many of the primary studies included is considered weak limiting these findings.

Multi-faceted interventions

The majority of the systematic reviews ( n  = 20) reported on more than one intervention type. Some of these systematic reviews focus exclusively on multi-faceted interventions, whilst others compare different single or combined interventions aimed at achieving similar outcomes in particular settings. While these two approaches are often described in a similar way, they are actually quite distinct from each other as the former report how multiple strategies may be strategically combined in pursuance of an agreed goal, whilst the latter report how different strategies may be incidentally used in sometimes contrasting settings in the pursuance of similar goals. Ariyo et al. [ 35 ] helpfully summarise five key elements often found in effective MFI strategies in LMICs — but which may also be transferrable to HICs. First, effective MFIs encourage a multi-disciplinary approach acknowledging the roles played by different professional groups to collectively incorporate evidence-informed practice. Second, they utilise leadership drawing on a wide set of clinical and non-clinical actors including managers and even government officials. Third, multiple types of educational practices are utilised — including input from patients as stakeholders in some cases. Fourth, protocols, checklists and bundles are used — most effectively when local ownership is encouraged. Finally, most MFIs included an emphasis on monitoring and evaluation [ 35 ]. In contrast, other studies offer little information about the nature of the different MFI components of included studies which makes it difficult to extrapolate much learning from them in relation to why or how MFIs might affect practice (e.g. [ 28 , 38 ]). Ultimately, context matters, which some review authors argue makes it difficult to say with real certainty whether single or MFI strategies are superior (e.g. [ 21 , 27 ]). Taking all the systematic reviews together we may conclude that MFIs appear to be more likely to generate positive results than single interventions (e.g. [ 34 , 45 ]) though other reviews should make us cautious (e.g. [ 32 , 43 ]).

While multi-faceted interventions still seem to be more effective than single-strategy interventions, there were important distinctions between how the results of reviews of MFIs are interpreted in this review as compared to the previous reviews [ 8 , 9 ], reflecting greater nuance and debate in the literature. This was particularly noticeable where the effectiveness of MFIs was compared to single strategies, reflecting developments widely discussed in previous studies [ 10 ]. We found that most systematic reviews are bounded by their clinical, professional, spatial, system, or setting criteria and often seek to draw out implications for the implementation of evidence in their areas of specific interest (such as nursing or acute care). Frequently this means combining all relevant studies to explore the respective foci of each systematic review. Therefore, most reviews we categorised as MFIs actually include highly variable numbers and combinations of intervention strategies and highly heterogeneous original study designs. This makes statistical analyses of the type used by Squires et al. [ 10 ] on the three reviews in their paper not possible. Further, it also makes extrapolating findings and commenting on broad themes complex and difficult. This may suggest that future research should shift its focus from merely examining ‘what works’ to ‘what works where and what works for whom’ — perhaps pointing to the value of realist approaches to these complex review topics [ 48 , 49 ] and other more theory-informed approaches [ 50 ].

Some reviews have a relatively small number of studies (i.e. fewer than 10) and the authors are often understandably reluctant to engage with wider debates about the implications of their findings. Other larger studies do engage in deeper discussions about internal comparisons of findings across included studies and also contextualise these in wider debates. Some of the most informative studies (e.g. [ 35 , 40 ]) move beyond EPOC categories and contextualise MFIs within wider systems thinking and implementation theory. This distinction between MFIs and single interventions can actually be very useful as it offers lessons about the contexts in which individual interventions might have bounded effectiveness (i.e. educational interventions for individual change). Taken as a whole, this may also then help in terms of how and when to conjoin single interventions into effective MFIs.

In the two previous reviews, a consistent finding was that MFIs were more effective than single interventions [ 8 , 9 ]. However, like Squires et al. [ 10 ] this overview is more equivocal on this important issue. There are four points which may help account for the differences in findings in this regard. Firstly, the diversity of the systematic reviews in terms of clinical topic or setting is an important factor. Secondly, there is heterogeneity of the studies within the included systematic reviews themselves. Thirdly, there is a lack of consistency with regards to the definition and strategies included within of MFIs. Finally, there are epistemological differences across the papers and the reviews. This means that the results that are presented depend on the methods used to measure, report, and synthesise them. For instance, some reviews highlight that education strategies can be useful to improve provider understanding — but without wider organisational or system-level change, they may struggle to deliver sustained transformation [ 19 , 44 ].

It is also worth highlighting the importance of the theory of change underlying the different interventions. Where authors of the systematic reviews draw on theory, there is space to discuss/explain findings. We note a distinction between theoretical and atheoretical systematic review discussion sections. Atheoretical reviews tend to present acontextual findings (for instance, one study found very positive results for one intervention, and this gets highlighted in the abstract) whilst theoretically informed reviews attempt to contextualise and explain patterns within the included studies. Theory-informed systematic reviews seem more likely to offer more profound and useful insights (see [ 19 , 35 , 40 , 43 , 45 ]). We find that the most insightful systematic reviews of MFIs engage in theoretical generalisation — they attempt to go beyond the data of individual studies and discuss the wider implications of the findings of the studies within their reviews drawing on implementation theory. At the same time, they highlight the active role of context and the wider relational and system-wide issues linked to implementation. It is these types of investigations that can help providers further develop evidence-based practice.

This overview has identified a small, but insightful set of papers that interrogate and help theorise why, how, for whom, and in which circumstances it might be the case that MFIs are superior (see [ 19 , 35 , 40 ] once more). At the level of this overview — and in most of the systematic reviews included — it appears to be the case that MFIs struggle with the question of attribution. In addition, there are other important elements that are often unmeasured, or unreported (e.g. costs of the intervention — see [ 40 ]). Finally, the stronger systematic reviews [ 19 , 35 , 40 , 43 , 45 ] engage with systems issues, human agency and context [ 18 ] in a way that was not evident in the systematic reviews identified in the previous reviews [ 8 , 9 ]. The earlier reviews lacked any theory of change that might explain why MFIs might be more effective than single ones — whereas now some systematic reviews do this, which enables them to conclude that sometimes single interventions can still be more effective.

As Nilsen et al. ([ 6 ] p. 7) note ‘Study findings concerning the effectiveness of various approaches are continuously synthesized and assembled in systematic reviews’. We may have gone as far as we can in understanding the implementation of evidence through systematic reviews of single and multi-faceted interventions and the next step would be to conduct more research exploring the complex and situated nature of evidence used in clinical practice and by particular professional groups. This would further build on the nuanced discussion and conclusion sections in a subset of the papers we reviewed. This might also support the field to move away from isolating individual implementation strategies [ 6 ] to explore the complex processes involving a range of actors with differing capacities [ 51 ] working in diverse organisational cultures. Taxonomies of implementation strategies do not fully account for the complex process of implementation, which involves a range of different actors with different capacities and skills across multiple system levels. There is plenty of work to build on, particularly in the social sciences, which currently sits at the margins of debates about evidence implementation (see for example, Normalisation Process Theory [ 52 ]).

There are several changes that we have identified in this overview of systematic reviews in comparison to the review we published in 2011 [ 8 ]. A consistent and welcome finding is that the overall quality of the systematic reviews themselves appears to have improved between the two reviews, although this is not reflected upon in the papers. This is exhibited through better, clearer reporting mechanisms in relation to the mechanics of the reviews, alongside a greater attention to, and deeper description of, how potential biases in included papers are discussed. Additionally, there is an increased, but still limited, inclusion of original studies conducted in low- and middle-income countries as opposed to just high-income countries. Importantly, we found that many of these systematic reviews are attuned to, and comment upon the contextual distinctions of pursuing evidence-informed interventions in health care settings in different economic settings. Furthermore, systematic reviews included in this updated article cover a wider set of clinical specialities (both within and beyond hospital settings) and have a focus on a wider set of healthcare professions — discussing both similarities, differences and inter-professional challenges faced therein, compared to the earlier reviews. These wider ranges of studies highlight that a particular intervention or group of interventions may work well for one professional group but be ineffective for another. This diversity of study settings allows us to consider the important role context (in its many forms) plays on implementing evidence into practice. Examining the complex and varied context of health care will help us address what Nilsen et al. ([ 6 ] p. 1) described as, ‘society’s health problems [that] require research-based knowledge acted on by healthcare practitioners together with implementation of political measures from governmental agencies’. This will help us shift implementation science to move, ‘beyond a success or failure perspective towards improved analysis of variables that could explain the impact of the implementation process’ ([ 6 ] p. 2).

This review brings together 32 papers considering individual and multi-faceted interventions designed to support the use of evidence in clinical practice. The majority of reviews report strategies achieving small impacts (normally on processes of care). There is much less evidence that these strategies have shifted patient outcomes. Combined with the two previous reviews, 86 systematic reviews of strategies to increase the implementation of research into clinical practice have been conducted. As a whole, this substantial body of knowledge struggles to tell us more about the use of individual and MFIs than: ‘it depends’. To really move forwards in addressing the gap between research evidence and practice, we may need to shift the emphasis away from isolating individual and multi-faceted interventions to better understanding and building more situated, relational and organisational capability to support the use of research in clinical practice. This will involve drawing on a wider range of perspectives, especially from the social, economic, political and behavioural sciences in primary studies and diversifying the types of synthesis undertaken to include approaches such as realist synthesis which facilitate exploration of the context in which strategies are employed. Harvey et al. [ 53 ] suggest that when context is likely to be critical to implementation success there are a range of primary research approaches (participatory research, realist evaluation, developmental evaluation, ethnography, quality/ rapid cycle improvement) that are likely to be appropriate and insightful. While these approaches often form part of implementation studies in the form of process evaluations, they are usually relatively small scale in relation to implementation research as a whole. As a result, the findings often do not make it into the subsequent systematic reviews. This review provides further evidence that we need to bring qualitative approaches in from the periphery to play a central role in many implementation studies and subsequent evidence syntheses. It would be helpful for systematic reviews, at the very least, to include more detail about the interventions and their implementation in terms of how and why they worked.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Before and after study

Controlled clinical trial

Effective Practice and Organisation of Care

High-income countries

Information and Communications Technology

Interrupted time series

Knowledge translation

Low- and middle-income countries

Randomised controlled trial

Grol R, Grimshaw J. From best evidence to best practice: effective implementation of change in patients’ care. Lancet. 2003;362:1225–30. https://doi.org/10.1016/S0140-6736(03)14546-1 .

Article   PubMed   Google Scholar  

Green LA, Seifert CM. Translation of research into practice: why we can’t “just do it.” J Am Board Fam Pract. 2005;18:541–5. https://doi.org/10.3122/jabfm.18.6.541 .

Eccles MP, Mittman BS. Welcome to Implementation Science. Implement Sci. 2006;1:1–3. https://doi.org/10.1186/1748-5908-1-1 .

Article   PubMed Central   Google Scholar  

Powell BJ, Waltz TJ, Chinman MJ, Damschroder LJ, Smith JL, Matthieu MM, et al. A refined compilation of implementation strategies: results from the Expert Recommendations for Implementing Change (ERIC) project. Implement Sci. 2015;10:2–14. https://doi.org/10.1186/s13012-015-0209-1 .

Article   Google Scholar  

Waltz TJ, Powell BJ, Matthieu MM, Damschroder LJ, et al. Use of concept mapping to characterize relationships among implementation strategies and assess their feasibility and importance: results from the Expert Recommendations for Implementing Change (ERIC) study. Implement Sci. 2015;10:1–8. https://doi.org/10.1186/s13012-015-0295-0 .

Nilsen P, Ståhl C, Roback K, et al. Never the twain shall meet? - a comparison of implementation science and policy implementation research. Implementation Sci. 2013;8:2–12. https://doi.org/10.1186/1748-5908-8-63 .

Rycroft-Malone J, Seers K, Eldh AC, et al. A realist process evaluation within the Facilitating Implementation of Research Evidence (FIRE) cluster randomised controlled international trial: an exemplar. Implementation Sci. 2018;13:1–15. https://doi.org/10.1186/s13012-018-0811-0 .

Boaz A, Baeza J, Fraser A, European Implementation Score Collaborative Group (EIS). Effective implementation of research into practice: an overview of systematic reviews of the health literature. BMC Res Notes. 2011;4:212. https://doi.org/10.1186/1756-0500-4-212 .

Article   PubMed   PubMed Central   Google Scholar  

Grimshaw JM, Shirran L, Thomas R, Mowatt G, Fraser C, Bero L, et al. Changing provider behavior – an overview of systematic reviews of interventions. Med Care. 2001;39 8Suppl 2:II2–45.

Google Scholar  

Squires JE, Sullivan K, Eccles MP, et al. Are multifaceted interventions more effective than single-component interventions in changing health-care professionals’ behaviours? An overview of systematic reviews. Implement Sci. 2014;9:1–22. https://doi.org/10.1186/s13012-014-0152-6 .

Salvador-Oliván JA, Marco-Cuenca G, Arquero-Avilés R. Development of an efficient search filter to retrieve systematic reviews from PubMed. J Med Libr Assoc. 2021;109:561–74. https://doi.org/10.5195/jmla.2021.1223 .

Thomas JM. Diffusion of innovation in systematic review methodology: why is study selection not yet assisted by automation? OA Evid Based Med. 2013;1:1–6.

Effective Practice and Organisation of Care (EPOC). The EPOC taxonomy of health systems interventions. EPOC Resources for review authors. Oslo: Norwegian Knowledge Centre for the Health Services; 2016. epoc.cochrane.org/epoc-taxonomy . Accessed 9 Oct 2023.

Jamal A, McKenzie K, Clark M. The impact of health information technology on the quality of medical and health care: a systematic review. Health Inf Manag. 2009;38:26–37. https://doi.org/10.1177/183335830903800305 .

Menon A, Korner-Bitensky N, Kastner M, et al. Strategies for rehabilitation professionals to move evidence-based knowledge into practice: a systematic review. J Rehabil Med. 2009;41:1024–32. https://doi.org/10.2340/16501977-0451 .

Oxman AD, Guyatt GH. Validation of an index of the quality of review articles. J Clin Epidemiol. 1991;44:1271–8. https://doi.org/10.1016/0895-4356(91)90160-b .

Article   CAS   PubMed   Google Scholar  

Francke AL, Smit MC, de Veer AJ, et al. Factors influencing the implementation of clinical guidelines for health care professionals: a systematic meta-review. BMC Med Inform Decis Mak. 2008;8:1–11. https://doi.org/10.1186/1472-6947-8-38 .

Jones CA, Roop SC, Pohar SL, et al. Translating knowledge in rehabilitation: systematic review. Phys Ther. 2015;95:663–77. https://doi.org/10.2522/ptj.20130512 .

Scott D, Albrecht L, O’Leary K, Ball GDC, et al. Systematic review of knowledge translation strategies in the allied health professions. Implement Sci. 2012;7:1–17. https://doi.org/10.1186/1748-5908-7-70 .

Wu Y, Brettle A, Zhou C, Ou J, et al. Do educational interventions aimed at nurses to support the implementation of evidence-based practice improve patient outcomes? A systematic review. Nurse Educ Today. 2018;70:109–14. https://doi.org/10.1016/j.nedt.2018.08.026 .

Yost J, Ganann R, Thompson D, Aloweni F, et al. The effectiveness of knowledge translation interventions for promoting evidence-informed decision-making among nurses in tertiary care: a systematic review and meta-analysis. Implement Sci. 2015;10:1–15. https://doi.org/10.1186/s13012-015-0286-1 .

Grudniewicz A, Kealy R, Rodseth RN, Hamid J, et al. What is the effectiveness of printed educational materials on primary care physician knowledge, behaviour, and patient outcomes: a systematic review and meta-analyses. Implement Sci. 2015;10:2–12. https://doi.org/10.1186/s13012-015-0347-5 .

Koota E, Kääriäinen M, Melender HL. Educational interventions promoting evidence-based practice among emergency nurses: a systematic review. Int Emerg Nurs. 2018;41:51–8. https://doi.org/10.1016/j.ienj.2018.06.004 .

Flodgren G, O’Brien MA, Parmelli E, et al. Local opinion leaders: effects on professional practice and healthcare outcomes. Cochrane Database Syst Rev. 2019. https://doi.org/10.1002/14651858.CD000125.pub5 .

Arditi C, Rège-Walther M, Durieux P, et al. Computer-generated reminders delivered on paper to healthcare professionals: effects on professional practice and healthcare outcomes. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.CD001175.pub4 .

Pantoja T, Grimshaw JM, Colomer N, et al. Manually-generated reminders delivered on paper: effects on professional practice and patient outcomes. Cochrane Database Syst Rev. 2019. https://doi.org/10.1002/14651858.CD001174.pub4 .

De Angelis G, Davies B, King J, McEwan J, et al. Information and communication technologies for the dissemination of clinical practice guidelines to health professionals: a systematic review. JMIR Med Educ. 2016;2:e16. https://doi.org/10.2196/mededu.6288 .

Brown A, Barnes C, Byaruhanga J, McLaughlin M, et al. Effectiveness of technology-enabled knowledge translation strategies in improving the use of research in public health: systematic review. J Med Internet Res. 2020;22:e17274. https://doi.org/10.2196/17274 .

Sykes MJ, McAnuff J, Kolehmainen N. When is audit and feedback effective in dementia care? A systematic review. Int J Nurs Stud. 2018;79:27–35. https://doi.org/10.1016/j.ijnurstu.2017.10.013 .

Bhatt NR, Czarniecki SW, Borgmann H, et al. A systematic review of the use of social media for dissemination of clinical practice guidelines. Eur Urol Focus. 2021;7:1195–204. https://doi.org/10.1016/j.euf.2020.10.008 .

Yamada J, Shorkey A, Barwick M, Widger K, et al. The effectiveness of toolkits as knowledge translation strategies for integrating evidence into clinical care: a systematic review. BMJ Open. 2015;5:e006808. https://doi.org/10.1136/bmjopen-2014-006808 .

Afari-Asiedu S, Abdulai MA, Tostmann A, et al. Interventions to improve dispensing of antibiotics at the community level in low and middle income countries: a systematic review. J Glob Antimicrob Resist. 2022;29:259–74. https://doi.org/10.1016/j.jgar.2022.03.009 .

Boonacker CW, Hoes AW, Dikhoff MJ, Schilder AG, et al. Interventions in health care professionals to improve treatment in children with upper respiratory tract infections. Int J Pediatr Otorhinolaryngol. 2010;74:1113–21. https://doi.org/10.1016/j.ijporl.2010.07.008 .

Al Zoubi FM, Menon A, Mayo NE, et al. The effectiveness of interventions designed to increase the uptake of clinical practice guidelines and best practices among musculoskeletal professionals: a systematic review. BMC Health Serv Res. 2018;18:2–11. https://doi.org/10.1186/s12913-018-3253-0 .

Ariyo P, Zayed B, Riese V, Anton B, et al. Implementation strategies to reduce surgical site infections: a systematic review. Infect Control Hosp Epidemiol. 2019;3:287–300. https://doi.org/10.1017/ice.2018.355 .

Borgert MJ, Goossens A, Dongelmans DA. What are effective strategies for the implementation of care bundles on ICUs: a systematic review. Implement Sci. 2015;10:1–11. https://doi.org/10.1186/s13012-015-0306-1 .

Cahill LS, Carey LM, Lannin NA, et al. Implementation interventions to promote the uptake of evidence-based practices in stroke rehabilitation. Cochrane Database Syst Rev. 2020. https://doi.org/10.1002/14651858.CD012575.pub2 .

Pedersen ER, Rubenstein L, Kandrack R, Danz M, et al. Elusive search for effective provider interventions: a systematic review of provider interventions to increase adherence to evidence-based treatment for depression. Implement Sci. 2018;13:1–30. https://doi.org/10.1186/s13012-018-0788-8 .

Jenkins HJ, Hancock MJ, French SD, Maher CG, et al. Effectiveness of interventions designed to reduce the use of imaging for low-back pain: a systematic review. CMAJ. 2015;187:401–8. https://doi.org/10.1503/cmaj.141183 .

Bennett S, Laver K, MacAndrew M, Beattie E, et al. Implementation of evidence-based, non-pharmacological interventions addressing behavior and psychological symptoms of dementia: a systematic review focused on implementation strategies. Int Psychogeriatr. 2021;33:947–75. https://doi.org/10.1017/S1041610220001702 .

Noonan VK, Wolfe DL, Thorogood NP, et al. Knowledge translation and implementation in spinal cord injury: a systematic review. Spinal Cord. 2014;52:578–87. https://doi.org/10.1038/sc.2014.62 .

Albrecht L, Archibald M, Snelgrove-Clarke E, et al. Systematic review of knowledge translation strategies to promote research uptake in child health settings. J Pediatr Nurs. 2016;31:235–54. https://doi.org/10.1016/j.pedn.2015.12.002 .

Campbell A, Louie-Poon S, Slater L, et al. Knowledge translation strategies used by healthcare professionals in child health settings: an updated systematic review. J Pediatr Nurs. 2019;47:114–20. https://doi.org/10.1016/j.pedn.2019.04.026 .

Bird ML, Miller T, Connell LA, et al. Moving stroke rehabilitation evidence into practice: a systematic review of randomized controlled trials. Clin Rehabil. 2019;33:1586–95. https://doi.org/10.1177/0269215519847253 .

Goorts K, Dizon J, Milanese S. The effectiveness of implementation strategies for promoting evidence informed interventions in allied healthcare: a systematic review. BMC Health Serv Res. 2021;21:1–11. https://doi.org/10.1186/s12913-021-06190-0 .

Zadro JR, O’Keeffe M, Allison JL, Lembke KA, et al. Effectiveness of implementation strategies to improve adherence of physical therapist treatment choices to clinical practice guidelines for musculoskeletal conditions: systematic review. Phys Ther. 2020;100:1516–41. https://doi.org/10.1093/ptj/pzaa101 .

Van der Veer SN, Jager KJ, Nache AM, et al. Translating knowledge on best practice into improving quality of RRT care: a systematic review of implementation strategies. Kidney Int. 2011;80:1021–34. https://doi.org/10.1038/ki.2011.222 .

Pawson R, Greenhalgh T, Harvey G, et al. Realist review–a new method of systematic review designed for complex policy interventions. J Health Serv Res Policy. 2005;10Suppl 1:21–34. https://doi.org/10.1258/1355819054308530 .

Rycroft-Malone J, McCormack B, Hutchinson AM, et al. Realist synthesis: illustrating the method for implementation research. Implementation Sci. 2012;7:1–10. https://doi.org/10.1186/1748-5908-7-33 .

Johnson MJ, May CR. Promoting professional behaviour change in healthcare: what interventions work, and why? A theory-led overview of systematic reviews. BMJ Open. 2015;5:e008592. https://doi.org/10.1136/bmjopen-2015-008592 .

Metz A, Jensen T, Farley A, Boaz A, et al. Is implementation research out of step with implementation practice? Pathways to effective implementation support over the last decade. Implement Res Pract. 2022;3:1–11. https://doi.org/10.1177/26334895221105585 .

May CR, Finch TL, Cornford J, Exley C, et al. Integrating telecare for chronic disease management in the community: What needs to be done? BMC Health Serv Res. 2011;11:1–11. https://doi.org/10.1186/1472-6963-11-131 .

Harvey G, Rycroft-Malone J, Seers K, Wilson P, et al. Connecting the science and practice of implementation – applying the lens of context to inform study design in implementation research. Front Health Serv. 2023;3:1–15. https://doi.org/10.3389/frhs.2023.1162762 .

Download references

Acknowledgements

The authors would like to thank Professor Kathryn Oliver for her support in the planning the review, Professor Steve Hanney for reading and commenting on the final manuscript and the staff at LSHTM library for their support in planning and conducting the literature search.

This study was supported by LSHTM’s Research England QR strategic priorities funding allocation and the National Institute for Health and Care Research (NIHR) Applied Research Collaboration South London (NIHR ARC South London) at King’s College Hospital NHS Foundation Trust. Grant number NIHR200152. The views expressed are those of the author(s) and not necessarily those of the NIHR, the Department of Health and Social Care or Research England.

Author information

Authors and affiliations.

Health and Social Care Workforce Research Unit, The Policy Institute, King’s College London, Virginia Woolf Building, 22 Kingsway, London, WC2B 6LE, UK

Annette Boaz

King’s Business School, King’s College London, 30 Aldwych, London, WC2B 4BG, UK

Juan Baeza & Alec Fraser

Federal University of Santa Catarina (UFSC), Campus Universitário Reitor João Davi Ferreira Lima, Florianópolis, SC, 88.040-900, Brazil

Erik Persson

You can also search for this author in PubMed   Google Scholar

Contributions

AB led the conceptual development and structure of the manuscript. EP conducted the searches and data extraction. All authors contributed to screening and quality appraisal. EP and AF wrote the first draft of the methods section. AB, JB and AF performed result synthesis and contributed to the analyses. AB wrote the first draft of the manuscript and incorporated feedback and revisions from all other authors. All authors revised and approved the final manuscript.

Corresponding author

Correspondence to Annette Boaz .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1: appendix a., additional file 2: appendix b., rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Boaz, A., Baeza, J., Fraser, A. et al. ‘It depends’: what 86 systematic reviews tell us about what strategies to use to support the use of research in clinical practice. Implementation Sci 19 , 15 (2024). https://doi.org/10.1186/s13012-024-01337-z

Download citation

Received : 01 November 2023

Accepted : 05 January 2024

Published : 19 February 2024

DOI : https://doi.org/10.1186/s13012-024-01337-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Implementation
  • Interventions
  • Clinical practice
  • Research evidence
  • Multi-faceted

Implementation Science

ISSN: 1748-5908

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

paper research example

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 14 February 2024

Critical transitions in the Amazon forest system

  • Bernardo M. Flores   ORCID: orcid.org/0000-0003-4555-5598 1 ,
  • Encarni Montoya   ORCID: orcid.org/0000-0002-4690-190X 2 ,
  • Boris Sakschewski   ORCID: orcid.org/0000-0002-7230-9723 3 ,
  • Nathália Nascimento   ORCID: orcid.org/0000-0003-4819-0811 4 ,
  • Arie Staal   ORCID: orcid.org/0000-0001-5409-1436 5 ,
  • Richard A. Betts   ORCID: orcid.org/0000-0002-4929-0307 6 , 7 ,
  • Carolina Levis   ORCID: orcid.org/0000-0002-8425-9479 1 ,
  • David M. Lapola 8 ,
  • Adriane Esquível-Muelbert   ORCID: orcid.org/0000-0001-5335-1259 9 , 10 ,
  • Catarina Jakovac   ORCID: orcid.org/0000-0002-8130-852X 11 ,
  • Carlos A. Nobre 4 ,
  • Rafael S. Oliveira   ORCID: orcid.org/0000-0002-6392-2526 12 ,
  • Laura S. Borma 13 ,
  • Da Nian   ORCID: orcid.org/0000-0002-2320-5223 3 ,
  • Niklas Boers   ORCID: orcid.org/0000-0002-1239-9034 3 , 14 ,
  • Susanna B. Hecht 15 ,
  • Hans ter Steege   ORCID: orcid.org/0000-0002-8738-2659 16 , 17 ,
  • Julia Arieira 18 ,
  • Isabella L. Lucas 19 ,
  • Erika Berenguer   ORCID: orcid.org/0000-0001-8157-8792 20 ,
  • José A. Marengo 21 , 22 , 23 ,
  • Luciana V. Gatti 13 ,
  • Caio R. C. Mattos   ORCID: orcid.org/0000-0002-8635-3901 24 &
  • Marina Hirota   ORCID: orcid.org/0000-0002-1958-3651 1 , 12 , 25  

Nature volume  626 ,  pages 555–564 ( 2024 ) Cite this article

33k Accesses

2690 Altmetric

Metrics details

  • Climate and Earth system modelling
  • Ecosystem ecology
  • Ecosystem services
  • Sustainability

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern 1 , 2 , 3 . For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system 1 . Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.

The Amazon forest is a complex system of interconnected species, ecosystems and human cultures that contributes to the well-being of people globally 1 . The Amazon forest holds more than 10% of Earth’s terrestrial biodiversity, stores an amount of carbon equivalent to 15–20 years of global CO 2 emissions (150–200 Pg C), and has a net cooling effect (from evapotranspiration) that helps to stabilize the Earth’s climate 1 , 2 , 3 . The forest contributes up to 50% of rainfall in the region and is crucial for moisture supply across South America 4 , allowing other biomes and economic activities to thrive in regions that would otherwise be more arid, such as the Pantanal wetlands and the La Plata river basin 1 . Large parts of the Amazon forest, however, are projected to experience mass mortality events due to climatic and land use-related disturbances in the coming decades 5 , 6 , potentially accelerating climate change through carbon emissions and feedbacks with the climate system 2 , 3 . These impacts would also involve irreversible loss of biodiversity, socioeconomic and cultural values 1 , 7 , 8 , 9 . The Amazon is home to more than 40 million people, including 2.2 million Indigenous peoples of more than 300 ethnicities, as well as afrodescendent and local traditional communities 1 . Indigenous peoples and local communities (IPLCs) would be harmed by forest loss in terms of their livelihoods, lifeways and knowledge systems that inspire societies globally 1 , 7 , 9 .

Understanding the risk of such catastrophic behaviour requires addressing complex factors that shape ecosystem resilience 10 . A major question is whether a large-scale collapse of the Amazon forest system could actually happen within the twenty-first century, and if this would be associated with a particular tipping point. Here we synthesize evidence from paleorecords, observational data and modelling studies of critical drivers of stress on the system. We assess potential thresholds of those drivers and the main feedbacks that could push the Amazon forest towards a tipping point. From examples of disturbed forests across the Amazon, we analyse the most plausible ecosystem trajectories that may lead to alternative stable states 10 . Moreover, inspired by the framework of ‘planetary boundaries’ 11 , we identify climatic and land use boundaries that reveal a safe operating space for the Amazon forest system in the Anthropocene epoch 12 .

Theory and concepts

Over time, environmental conditions fluctuate and may cause stress on ecosystems (for example, lack of water for plants). When stressing conditions intensify, some ecosystems may change their equilibrium state gradually, whereas others may shift abruptly between alternative stable states 10 . A ‘tipping point’ is the critical threshold value of an environmental stressing condition at which a small disturbance may cause an abrupt shift in the ecosystem state 2 , 3 , 13 , 14 , accelerated by positive feedbacks 15 (see Extended Data Table 1 ). This type of behaviour in which the system gets into a phase of self-reinforcing (runaway) change is often referred to as ‘critical transition’ 16 . As ecosystems approach a tipping point, they often lose resilience while still remaining close to equilibrium 17 . Thus, monitoring changes in ecosystem resilience and in key environmental conditions may enable societies to manage and avoid critical transitions. We adopt the concept of ‘ecological resilience’ 18 (hereafter ‘resilience’), which refers to the ability of an ecosystem to persist with similar structure, functioning and interactions, despite disturbances that push it to an alternative stable state. The possibility that alternative stable states (or bistability) may exist in a system has important implications, because the crossing of tipping points may be irreversible for the time scales that matter to societies 10 . Tropical terrestrial ecosystems are a well-known case in which critical transitions between alternative stable states may occur (Extended Data Fig. 1 ).

Past dynamics

The Amazon system has been mostly covered by forest throughout the Cenozoic era 19 (for 65 million years). Seven million years ago, the Amazon river began to drain the massive wetlands that covered most of the western Amazon, allowing forests to expand over grasslands in that region. More recently, during the drier and cooler conditions of the Last Glacial Maximum 20 (LGM) (around 21,000 years ago) and of the mid-Holocene epoch 21 (around 6,000 years ago), forests persisted even when humans were already present in the landscape 22 . Nonetheless, savannas expanded in peripheral parts of the southern Amazon basin during the LGM and mid-Holocene 23 , as well as in the northeastern Amazon during the early Holocene (around 11,000 years ago), probably influenced by drier climatic conditions and fires ignited by humans 24 , 25 . Throughout the core of the Amazon forest biome, patches of white-sand savanna also expanded in the past 20,000–7,000 years, driven by sediment deposition along ancient rivers 26 , and more recently (around 800 years ago) owing to Indigenous fires 27 . However, during the past 3,000 years, forests have been mostly expanding over savanna in the southern Amazon driven by increasingly wet conditions 28 .

Although palaeorecords suggest that a large-scale Amazon forest collapse did not occur within the past 65 million years 19 , they indicate that savannas expanded locally, particularly in the more seasonal peripheral regions when fires ignited by humans were frequent 23 , 24 . Patches of white-sand savanna also expanded within the Amazon forest owing to geomorphological dynamics and fires 26 , 27 . Past drought periods were usually associated with much lower atmospheric CO 2 concentrations, which may have reduced water-use efficiency of trees 29 (that is, trees assimilated less carbon during transpiration). However, these periods also coincided with cooler temperatures 20 , 21 , which probably reduced water demand by trees 30 . Past drier climatic conditions were therefore very different from the current climatic conditions, in which observed warming trends may exacerbate drought impacts on the forest by exposing trees to unprecedented levels of water stress 31 , 32 .

Global change impacts on forest resilience

Satellite observations from across the Amazon suggest that forest resilience has been decreasing since the early 2000s 33 , possibly as a result of global changes. In this section, we synthesize three global change impacts that vary spatially and temporally across the Amazon system, affecting forest resilience and the risk of critical transitions.

Regional climatic conditions

Within the twenty-first century, global warming may cause long-term changes in Amazonian climatic conditions 2 . Human greenhouse gas emissions continue to intensify global warming, but the warming rate also depends on feedbacks in the climate system that remain uncertain 2 , 3 . Recent climate models of the 6th phase of the Coupled Model Intercomparison Project (CMIP6) agree that in the coming decades, rainfall conditions will become more seasonal in the eastern and southern Amazonian regions, and temperatures will become higher across the entire Amazon 1 , 2 . By 2050, models project that a significant increase in the number of consecutive dry days by 10−30 days and in annual maximum temperatures by 2–4 °C, depending on the greenhouse gas emission scenario 2 . These climatic conditions could expose the forest to unprecedented levels of vapour pressure deficit 31 and consequently water stress 30 .

Satellite observations of climatic variability 31 confirm model projections 2 , showing that since the early 1980s, the Amazonian region has been warming significantly at an average rate of 0.27 °C per decade during the dry season, with the highest rates of up to 0.6 °C per decade in the centre and southeast of the biome (Fig. 1a ). Only a few small areas in the west of the biome are significantly cooling by around 0.1 °C per decade (Fig. 1a ). Dry season mean temperature is now more than 2 °C higher than it was 40 years ago in large parts of the central and southeastern Amazon. If trends continue, these areas could potentially warm by over 4 °C by 2050. Maximum temperatures during the dry season follow a similar trend, rising across most of the biome (Extended Data Fig. 2 ), exposing the forest 34 and local peoples 35 to potentially unbearable heat. Rising temperatures will increase thermal stress, potentially reducing forest productivity and carbon storage capacity 36 and causing widespread leaf damage 34 .

figure 1

a , Changes in the dry season (July–October) mean temperature reveal widespread warming, estimated using simple regressions between time and temperature observed between 1981 and 2020 (with P  < 0.1). b , Potential ecosystem stability classes estimated for year 2050, adapted from current stability classes (Extended Data Fig. 1b ) by considering only areas with significant regression slopes between time and annual rainfall observed from 1981 through 2020 (with P  < 0.1) (see Extended Data Fig. 3 for areas with significant changes). c , Repeated extreme drought events between 2001–2018 (adapted from ref. 39 ). d , Road network from where illegal deforestation and degradation may spread. e , Protected areas and Indigenous territories reduce deforestation and fire disturbances. f , Ecosystem transition potential (the possibility of forest shifting into an alternative structural or compositional state) across the Amazon biome by year 2050 inferred from compounding disturbances ( a – d ) and high-governance areas ( e ). We excluded accumulated deforestation until 2020 and savannas. Transition potential rises with compounding disturbances and varies as follows: less than 0 (in blue) as low; between 1 and 2 as moderate (in yellow); more than 2 as high (orange–red). Transition potential represents the sum of: (1) slopes of dry season mean temperature (as in a , multiplied by 10); (2) ecosystem stability classes estimated for year 2050 (as in b ), with 0 for stable forest, 1 for bistable and 2 for stable savanna; (3) accumulated impacts from extreme drought events, with 0.2 for each event; (4) road proximity as proxy for degrading activities, with 1 for pixels within 10 km from a road; (5) areas with higher governance within protected areas and Indigenous territories, with −1 for pixels inside these areas. For more details, see  Methods .

Since the early 1980s, rainfall conditions have also changed 31 . Peripheral and central parts of the Amazon forest are drying significantly, such as in the southern Bolivian Amazon, where annual rainfall reduced by up to 20 mm yr −1 (Extended Data Fig. 3a ). By contrast, parts of the western and eastern Amazon forest are becoming wetter, with annual rainfall increasing by up to 20 mm yr −1 . If these trends continue, ecosystem stability (as in Extended Data Fig. 1 ) will probably change in parts of the Amazon by 2050, reshaping forest resilience to disturbances (Fig. 1b and Extended Data Fig. 3b ). For example, 6% of the biome may change from stable forest to a bistable regime in parts of the southern and central Amazon. Another 3% of the biome may pass the critical threshold in annual rainfall into stable savanna in the southern Bolivian Amazon. Bistable areas covering 8% of the biome may turn into stable forest in the western Amazon (Peru and Bolivia), thus becoming more resilient to disturbances. For comparison with satellite observations, we used projections of ecosystem stability by 2050 based on CMIP6 model ensembles for a low (SSP2–4.5) and a high (SSP5–8.5) greenhouse gas emission scenario (Extended Data Fig. 4 and Supplementary Table 1 ). An ensemble with the 5 coupled models that include a dynamic vegetation module indicates that 18–27% of the biome may transition from stable forest to bistable and that 2–6% may transition to stable savanna (depending on the scenario), mostly in the northeastern Amazon. However, an ensemble with all 33 models suggests that 35–41% of the biome could become bistable, including large areas of the southern Amazon. The difference between both ensembles is possibly related to the forest–rainfall feedback included in the five coupled models, which increases total annual rainfall and therefore the stable forest area along the southern Amazon, but only when deforestation is not included in the simulations 4 , 37 . Nonetheless, both model ensembles agree that bistable regions will expand deeper into the Amazon, increasing the risk of critical transitions due to disturbances (as implied by the existence of alternative stable states; Extended Data Fig. 1 ).

Disturbance regimes

Within the remaining Amazon forest area, 17% has been degraded by human disturbances 38 , such as logging, edge effects and understory fires, but if we consider also the impacts from repeated extreme drought events in the past decades, 38% of the Amazon could be degraded 39 . Increasing rainfall variability is causing extreme drought events to become more widespread and frequent across the Amazon (Fig. 1c ), together with extreme wet events and convective storms that result in more windthrow disturbances 40 . Drought regimes are intensifying across the region 41 , possibly due to deforestation 42 that continues to expand within the system (Extended Data Fig. 5 ). As a result, new fire regimes are burning larger forest areas 43 , emitting more carbon to the atmosphere 44 and forcing IPLCs to readapt 45 . Road networks (Fig. 1d ) facilitate illegal activities, promoting more deforestation, logging and fire spread throughout the core of the Amazon forest 38 , 39 . The impacts of these pervasive disturbances on biodiversity and on IPLCs will probably affect ecosystem adaptability (Box 1 ), and consequently forest resilience to global changes.

Currently, 86% of the Amazon biome may be in a stable forest state (Extended Data Fig. 1b ), but some of these stable forests are showing signs of fragility 33 . For instance, field evidence from long-term monitoring sites across the Amazon shows that tree mortality rates are increasing in most sites, reducing carbon storage 46 , while favouring the replacement by drought-affiliated species 47 . Aircraft measurements of vertical carbon flux between the forest and atmosphere reveal how southeastern forests are already emitting more carbon than they absorb, probably because of deforestation and fire 48 .

As bistable forests expand deeper into the system (Fig. 1b and Extended Data Fig. 4 ), the distribution of compounding disturbances may indicate where ecosystem transitions are more likely to occur in the coming decades (Fig. 1f ). For this, we combined spatial information on warming and drying trends, repeated extreme drought events, together with road networks, as proxy for future deforestation and degradation 38 , 39 . We also included protected areas and Indigenous territories as areas with high forest governance, where deforestation and fire regimes are among the lowest within the Amazon 49 (Fig. 1e ). This simple additive approach does not consider synergies between compounding disturbances that could trigger unexpected ecosystem transitions. However, by exploring only these factors affecting forest resilience and simplifying the enormous Amazonian complexity, we aimed to produce a simple and comprehensive map that can be useful for guiding future governance. We found that 10% of the Amazon forest biome has a relatively high transition potential (more than 2 disturbance types; Fig. 1f ), including bistable forests that could transition into a low tree cover state near savannas of Guyana, Venezuela, Colombia and Peru, as well as stable forests that could transition into alternative compositional states within the central Amazon, such as along the BR319 and Trans-Amazonian highways. Smaller areas with high transition potential were found scattered within deforestation frontiers, where most forests have been carved by roads 50 , 51 . Moreover, 47% of the biome has a moderate transition potential (more than 1 disturbance type; Fig. 1f ), including relatively remote parts of the central Amazon where warming trends and repeated extreme drought events overlap (Fig. 1a,c ). By contrast, large remote areas covering 53% of the biome have low transition potential, mostly reflecting the distribution of protected areas and Indigenous territories (Fig. 1e ). If these estimates, however, considered projections from CMIP6 models and their relatively broader areas of bistability (Extended Data Fig. 4 ), the proportion of the Amazon forest that could transition into a low tree cover state would be much larger.

Box 1 Ecosystem adaptability

We define ‘ecosystem adaptability’ as the capacity of an ecosystem to reorganize and persist in the face of environmental changes. In the past, many internal mechanisms have probably contributed to ecosystem adaptability, allowing Amazonian forests to persist during times of climate change. In this section we synthesize two of these internal mechanisms, which are now being undermined by global change.

Biodiversity

Amazonian forests are home to more than 15,000 tree species, of which 1% are dominant and the other 99% are mostly rare 107 . A single forest hectare in the central and northwestern Amazon can contain more than 300 tree species (Extended Data Fig. 7a ). Such tremendous tree species diversity can increase forest resilience by different mechanisms. Tree species complementarity increases carbon storage, accelerating forest recovery after disturbances 108 . Tree functional diversity increases forest adaptability to climate chance by offering various possibilities of functioning 99 . Rare species provide ‘ecological redundancy’, increasing opportunities for replacement of lost functions when dominant species disappear 109 . Diverse forests are also more likely to resist severe disturbances owing to ‘response diversity’ 110 —that is, some species may die, while others persist. For instance, in the rainy western Amazon, drought-resistant species are rare but present within tree communities 111 , implying that they could replace the dominant drought-sensitive species in a drier future. Diversity of other organisms, such as frugivores and pollinators, also increases forest resilience by stabilizing ecological networks 15 , 112 . Considering that half of Amazonian tree species are estimated to become threatened (IUCN Red list) by 2050 owing to climate change, deforestation and degradation 8 , biodiversity losses could contribute to further reducing forest resilience.

Indigenous peoples and local communities

Globally, Indigenous peoples and local communities (IPLCs) have a key role in maintaining ecosystems resilient to global change 113 . Humans have been present in the Amazon for at least 12,000 years 114 and extensively managing landscapes for 6,000 years 22 . Through diverse ecosystem management practices, humans built thousands of earthworks and ‘Amazon Dark Earth’ sites, and domesticated plants and landscapes across the Amazon forest 115 , 116 . By creating new cultural niches, humans partly modified the Amazonian flora 117 , 118 , increasing their food security even during times of past climate change 119 , 120 without the need for large-scale deforestation 117 . Today, IPLCs have diverse ecological knowledge about Amazonian plants, animals and landscapes, which allows them to quickly identify and respond to environmental changes with mitigation and adaptation practices 68 , 69 . IPLCs defend their territories against illegal deforestation and land use disturbances 49 , 113 , and they also promote forest restoration by expanding diverse agroforestry systems 121 , 122 . Amazonian regions with the highest linguistic diversity (a proxy for ecological knowledge diversity 123 ) are found in peripheral parts of the system, particularly in the north-west (Extended Data Fig. 7b ). However, consistent loss of Amazonian languages is causing an irreversible disruption of ecological knowledge systems, mostly driven by road construction 7 . Continued loss of ecological knowledge will undermine the capacity of IPLCs to manage and protect Amazonian forests, further reducing their resilience to global changes 9 .

CO 2 fertilization

Rising atmospheric CO 2 concentrations are expected to increase the photosynthetic rates of trees, accelerating forest growth and biomass accumulation on a global scale 52 . In addition, CO 2 may reduce water stress by increasing tree water-use efficiency 29 . As result, a ‘CO 2 fertilization effect’ could increase forest resilience to climatic variability 53 , 54 . However, observations from across the Amazon 46 suggest that CO 2 -driven accelerations of tree growth may have contributed to increasing tree mortality rates (trees grow faster but also die earlier), which could eventually neutralize the forest carbon sink in the coming decades 55 . Moreover, increases in tree water-use efficiency may reduce forest transpiration and consequently atmospheric moisture flow across the Amazon 53 , 56 , potentially reducing forest resilience in the southwest of the biome 4 , 37 . Experimental evidence suggests that CO 2 fertilization also depends on soil nutrient availability, particularly nitrogen and phosphorus 57 , 58 . Thus, it is possible that in the fertile soils of the western Amazon and Várzea floodplains, forests may gain resilience from increasing atmospheric CO 2 (depending on how it affects tree mortality rates), whereas on the weathered (nutrient-poor) soils across most of the Amazon basin 59 , forests might not respond to atmospheric CO 2 increase, particularly on eroded soils within deforestation frontiers 60 . In sum, owing to multiple interacting factors, potential responses of Amazonian forests to CO 2 fertilization are still poorly understood. Forest responses depend on scale, with resilience possibly increasing at the local scale on relatively more fertile soils, but decreasing at the regional scale due to reduced atmospheric moisture flow.

Local versus systemic transition

Environmental heterogeneity.

Environmental heterogeneity can reduce the risk of systemic transition (large-scale forest collapse) because when stressing conditions intensify (for example, rainfall declines), heterogeneous forests may transition gradually (first the less resilient forest patches, followed by the more resilient ones), compared to homogeneous forests that may transition more abruptly 17 (all forests transition in synchrony). Amazonian forests are heterogeneous in their resilience to disturbances, which may have contributed to buffering large-scale transitions in the past 37 , 61 , 62 . At the regional scale, a fundamental heterogeneity factor is rainfall and how it translates into water stress. Northwestern forests rarely experience water stress, which makes them relatively more resilient than southeastern forests that may experience water stress in the dry season, and therefore are more likely to shift into a low tree cover state. As a result of low exposure to water deficit, most northwestern forests have trees with low drought resistance and could suffer massive mortality if suddenly exposed to severe water stress 32 . However, this scenario seems unlikely to occur in the near future (Fig. 1 ). By contrast, most seasonal forest trees have various strategies to cope with water deficit owing to evolutionary and adaptive responses to historical drought events 32 , 63 . These strategies may allow seasonal forests to resist current levels of rainfall fluctuations 32 , but seasonal forests are also closer to the critical rainfall thresholds (Extended Data Fig. 1 ) and may experience unprecedented water stress in the coming decades (Fig. 1 ).

Other key heterogeneity factors (Extended Data Fig. 6 ) include topography, which determines plant access to groundwater 64 , and seasonal flooding, which increases forest vulnerability to wildfires 65 . Future changes in rainfall regimes will probably affect hydrological regimes 66 , exposing plateau (hilltop) forests to unprecedented water stress, and floodplain forests to extended floods, droughts and wildfires. Soil fertility is another heterogeneity factor that may affect forest resilience 59 , and which may be undermined by disturbances that cause topsoil erosion 60 . Moreover, as human disturbances intensify throughout the Amazon (Fig. 1 ), the spread of invasive grasses and fires can make the system increasingly homogeneous. Effects of heterogeneity on Amazon forest resilience have been poorly investigated so far (but see refs. 37 , 61 , 62 ) and many questions remain open, such as how much heterogeneity exists in the system and whether it can mitigate a systemic transition.

Sources of connectivity

Connectivity across Amazonian landscapes and regions can contribute to synchronize forest dynamics, causing different forests to behave more similarly 17 . Depending on the processes involved, connectivity can either increase or decrease the risk of systemic transition 17 . For instance, connectivity may facilitate forest recovery after disturbances through seed dispersal, but also it may spread disturbances, such as fire. In the Amazon, an important source of connectivity enhancing forest resilience is atmospheric moisture flow westward (Fig. 2 ), partly maintained by forest evapotranspiration 4 , 37 , 67 . Another example of connectivity that may increase social-ecological resilience is knowledge exchange among IPLCs about how to adapt to global change 68 , 69 (see Box 1 ). However, complex systems such as the Amazon can be particularly vulnerable to sources of connectivity that spread disturbances and increase the risk of systemic transition 70 . For instance, roads carving through the forest are well-known sources of illegal activities, such as logging and burning, which increase forest flammability 38 , 39 .

figure 2

Brazil holds 60% of the Amazon forest biome and has a major responsibility towards its neighbouring countries in the west. Brazil is the largest supplier of rainfall to western Amazonian countries. Up to one-third of the total annual rainfall in Amazonian territories of Bolivia, Peru, Colombia and Ecuador depends on water originating from Brazil’s portion of the Amazon forest. This international connectivity illustrates how policies related to deforestation, especially in the Brazilian Amazon, will affect the climate in other countries. Arrow widths are proportional to the percentage of the annual rainfall received by each country within their Amazonian areas. We only show flows with percentages higher than 10% (see  Methods for details).

Five critical drivers of water stress

Global warming.

Most CMIP6 models agree that a large-scale dieback of the Amazon is unlikely in response to global warming above pre-industrial levels 2 , but this ecosystem response is based on certain assumptions, such as a large CO 2 -fertilization effect 53 . Forests across the Amazon are already responding with increasing tree mortality rates that are not simulated by these models 46 , possibly because of compounding disturbance regimes (Fig. 1 ). Nonetheless, a few global climate models 3 , 14 , 71 , 72 , 73 , 74 indicate a broad range for a potential critical threshold in global warming between 2 and 6 °C (Fig. 3a ). These contrasting results can be explained by general differences between numerical models and their representation of the complex Amazonian system. While some models with dynamic vegetation indicate local-scale tipping events in peripheral parts of the Amazon 5 , 6 , other models suggest an increase in biomass and forest cover (for example, in refs. 53 , 54 ). For instance, a study found that when considering only climatic variability, a large-scale Amazon forest dieback is unlikely, even under a high greenhouse gas emission scenario 75 . However, most updated CMIP6 models agree that droughts in the Amazon region will increase in length and intensity, and that exceptionally hot droughts will become more common 2 , creating conditions that will probably boost other types of disturbances, such as large and destructive forest fires 76 , 77 . To avoid broad-scale ecosystem transitions due to synergies between climatic and land use disturbances (Fig. 3b ), we suggest a safe boundary for the Amazon forest at 1.5 °C for global warming above pre-industrial levels, in concert with the Paris Agreement goals.

figure 3

a , Five critical drivers of water stress on Amazonian forests affect (directly or indirectly) the underlying tipping point of the system. For each driver, we indicate potential critical thresholds and safe boundaries that define a safe operating space for keeping the Amazon forest resilient 11 , 12 . We followed the precautionary principle and considered the most conservative thresholds within the ranges, when confidence was low. b , Conceptual model showing how the five drivers may interact (arrows indicate positive effects) and how these interactions may strengthen a positive feedback between water stress and forest loss. These emerging positive feedback loops could accelerate a systemic transition of the Amazon forest 15 . At global scales, driver 1 (global warming) intensifies with greenhouse gas emissions, including emissions from deforestation. At local scales, driver 5 (accumulated deforestation) intensifies with land use changes. Drivers 2 to 4 (regional rainfall conditions) intensify in response to drivers 1 and 5. The intensification of these drivers may cause widespread tree mortality for instance because of extreme droughts and fires 76 . Water stress affects vegetation resilience globally 79 , 104 , but other stressors, such as heat stress 34 , 36 , may also have a role. In the coming decades, these five drivers could change at different rates, with some approaching a critical threshold faster than others. Therefore, monitoring them separately can provide vital information to guide mitigation and adaptation strategies.

Annual rainfall

Satellite observations of tree cover distributions across tropical South America suggest a critical threshold between 1,000 and 1,250 mm of annual rainfall 78 , 79 . On the basis of our reanalysis using tree cover data from the Amazon basin (Extended Data Fig. 1a ), we confirm a potential threshold at 1,000 mm of annual rainfall (Fig. 3a ), below which forests become rare and unstable. Between 1,000 and 1,800 mm of annual rainfall, high and low tree cover ecosystems exist in the Amazon as two alternative stable states (see Extended Data Table 2 for uncertainty ranges). Within the bistability range in annual rainfall conditions, forests are relatively more likely to collapse when severely disturbed, when compared to forests in areas with annual rainfall above 1,800 mm (Extended Data Fig. 1a ). For floodplain ecosystems covering 14% of the forest biome, a different critical threshold has been estimated at 1,500 mm of annual rainfall 65 , implying that floodplain forests may be the first to collapse in a drier future. To avoid local-scale ecosystem transitions due to compounding disturbances, we suggest a safe boundary in annual rainfall conditions at 1,800 mm.

Rainfall seasonality intensity

Satellite observations of tree cover distributions across tropical South America suggest a critical threshold in rainfall seasonality intensity at −400 mm of the maximum cumulative water deficit 37 , 80 (MCWD). Our reanalysis of the Amazon basin (Extended Data Fig. 1c ) confirms the critical threshold at approximately −450 mm in the MCWD (Fig. 3a ), and suggests a bistability range between approximately −350 and −450 mm (see Extended Data Table 2 for uncertainty ranges), in which forests are more likely to collapse when severely disturbed than forests in areas with MCWD below −350 mm. To avoid local-scale ecosystem transitions due to compounding disturbances, we suggest a safe boundary of MCWD at −350 mm.

Dry season length

Satellite observations of tree cover distributions across tropical South America suggest a critical threshold at 7 months of dry season length 79 (DSL). Our reanalysis of the Amazon basin (Extended Data Fig. 1d ) suggests a critical threshold at eight months of DSL (Fig. 3a ), with a bistability range between approximately five and eight months (see Extended Data Table 2 for uncertainty ranges), in which forests are more likely to collapse when severely disturbed than forests in areas with DSL below five months. To avoid local-scale ecosystem transitions due to compounding disturbances, we suggest a safe boundary of DSL at five months.

Accumulated deforestation

A potential vegetation model 81 found a critical threshold at 20% of accumulated deforestation (Fig. 3a ) by simulating Amazon forest responses to different scenarios of accumulated deforestation (with associated fire events) and of greenhouse gas emissions, and by considering a CO 2 fertilization effect of 25% of the maximum photosynthetic assimilation rate. Beyond 20% deforestation, forest mortality accelerated, causing large reductions in regional rainfall and consequently an ecosystem transition of 50−60% of the Amazon, depending on the emissions scenario. Another study using a climate-vegetation model found that with accumulated deforestation of 30−50%, rainfall in non-deforested areas downwind would decline 67 by 40% (ref.  67 ), potentially causing more forest loss 4 , 37 . Other more recent models incorporating fire disturbances support a potential broad-scale transition of the Amazon forest, simulating a biomass loss of 30–40% under a high-emission scenario 5 , 82 (SSP5–8.5 at 4 °C). The Amazon biome has already lost 13% of its original forest area due to deforestation 83 (or 15% of the biome if we consider also young secondary forests 83 that provide limited contribution to moisture flow 84 ). Among the remaining old-growth forests, at least 38% have been degraded by land use disturbances and repeated extreme droughts 39 , with impacts on moisture recycling that are still uncertain. Therefore, to avoid broad-scale ecosystem transitions due to runaway forest loss (Fig. 3b ), we suggest a safe boundary of accumulated deforestation of 10% of the original forest biome cover, which requires ending large-scale deforestation and restoring at least 5% of the biome.

Three alternative ecosystem trajectories

Degraded forest.

In stable forest regions of the Amazon with annual rainfall above 1,800 mm (Extended Data Fig. 1b ), forest cover usually recovers within a few years or decades after disturbances, yet forest composition and functioning may remain degraded for decades or centuries 84 , 85 , 86 , 87 . Estimates from across the Amazon indicate that approximately 30% of areas previously deforested are in a secondary forest state 83 (covering 4% of the biome). An additional 38% of the forest biome has been damaged by extreme droughts, fires, logging and edge effects 38 , 39 . These forests may naturally regrow through forest succession, yet because of feedbacks 15 , succession can become arrested, keeping forests persistently degraded (Fig. 4 ). Different types of degraded forests have been identified in the Amazon, each one associated with a particular group of dominant opportunistic plants. For instance, Vismia forests are common in old abandoned pastures managed with fire 85 , and are relatively stable, because Vismia trees favour recruitment of Vismia seedlings in detriment of other tree species 88 , 89 . Liana forests can also be relatively stable, because lianas self-perpetuate by causing physical damage to trees, allowing lianas to remain at high density 90 , 91 . Liana forests are expected to expand with increasing aridity, disturbance regimes and CO 2 fertilization 90 . Guadua bamboo forests are common in the southwestern Amazon 92 , 93 . Similar to lianas, bamboos self-perpetuate by causing physical damage to trees and have been expanding over burnt forests in the region 92 . Degraded forests are usually dominated by native opportunistic species, and their increasing expansion over disturbed forests could affect Amazonian functioning and resilience in the future.

figure 4

From examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories related to the types of disturbances, feedbacks and local environmental conditions. These alternative trajectories may be irreversible or transient depending on the strength of the novel interactions 15 . Particular combinations of interactions (arrows show positive effects described in the literature) may form feedback loops 15 that propel the ecosystem through these trajectories. In the ‘degraded forest’ trajectory, feedbacks often involve competition between trees and other opportunistic plants 85 , 90 , 92 , as well as interactions between deforestation, fire and seed limitation 84 , 87 , 105 . At the landscape scale, secondary forests are more likely to be cleared than mature forests, thus keeping forests persistently young and landscapes fragmented 83 . In the ‘degraded open-canopy ecosystem’ trajectory, feedbacks involve interactions among low tree cover and fire 97 , soil erosion 60 , seed limitation 105 , invasive grasses and opportunistic plants 96 . At the regional scale, a self-reinforcing feedback between forest loss and reduced atmospheric moisture flow may increase the resilience of these open-canopy degraded ecosystems 42 . In the ‘white-sand savanna’ trajectory, the main feedbacks result from interactions among low tree cover and fire, soil erosion, and seed limitation 106 . Bottom left, floodplain forest transition to white-sand savanna after repeated fires (photo credit: Bernardo Flores); bottom centre, forest transition to degraded open-canopy ecosystem after repeated fires (photo credit: Paulo Brando); bottom right, forest transition to Vismia degraded forest after slash-and-burn agriculture (photo credit: Catarina Jakovac).

White-sand savanna

White-sand savannas are ancient ecosystems that occur in patches within the Amazon forest biome, particularly in seasonally waterlogged or flooded areas 94 . Their origin has been attributed to geomorphological dynamics and past Indigenous fires 26 , 27 , 94 . In a remote landscape far from large agricultural frontiers, within a stable forest region of the Amazon (Extended Data Fig. 1b ), satellite and field evidence revealed that white-sand savannas are expanding where floodplain forests were repeatedly disturbed by fires 95 . After fire, the topsoil of burnt forests changes from clayey to sandy, favouring the establishment of savanna trees and native herbaceous plants 95 . Shifts from forest to white-sand savanna (Fig. 4 ) are probably stable (that is, the ecosystem is unlikely to recover back to forest within centuries), based on the relatively long persistence of these savannas in the landscape 94 . Although these ecosystem transitions have been confirmed only in the Negro river basin (central Amazon), floodplain forests in other parts of the Amazon were shown to be particularly vulnerable to collapse 45 , 64 , 65 .

Degraded open-canopy ecosystem

In bistable regions of the Amazon forest with annual rainfall below 1,800 mm (Extended Data Fig. 1b ), shifts to degraded open-canopy ecosystems are relatively common after repeated disturbances by fire 45 , 96 . The ecosystem often becomes dominated by fire-tolerant tree and palm species, together with alien invasive grasses and opportunistic herbaceous plants 96 , 97 , such as vines and ferns. Estimates from the southern Amazon indicate that 5−6% of the landscape has already shifted into degraded open-canopy ecosystems due to deforestation and fires 45 , 96 . It is still unclear, however, whether degraded open-canopy ecosystems are stable or transient (Fig. 4 ). Palaeorecords from the northern Amazon 98 show that burnt forests may spend centuries in a degraded open-canopy state before they eventually shift into a savanna. Today, invasion by alien flammable grasses is a novel stabilizing mechanism 96 , 97 , but the long-term persistence of these grasses in the ecosystem is also uncertain.

Prospects for modelling Amazon forest dynamics

Several aspects of the Amazon forest system may help improve earth system models (ESMs) to more accurately simulate ecosystem dynamics and feedbacks with the climate system. Simulating individual trees can improve the representation of growth and mortality dynamics, which ultimately affect forest dynamics (for example, refs. 61 , 62 , 99 ). Significant effects on simulation results may emerge from increasing plant functional diversity, representation of key physiological trade-offs and other features that determine water stress on plants, and also allowing for community adjustment to environmental heterogeneity and global change 32 , 55 , 62 , 99 . For now, most ESMs do not simulate a dynamic vegetation cover (Supplementary Table 1 ) and biomes are represented based on few plant functional types, basically simulating monocultures on the biome level. In reality, tree community adaptation to a heterogenous and dynamic environment feeds into the whole-system dynamics, and not covering such aspects makes a true Amazon tipping assessment more challenging.

Our findings also indicate that Amazon forest resilience is affected by compounding disturbances (Fig. 1 ). ESMs need to include different disturbance scenarios and potential synergies for creating more realistic patterns of disturbance regimes. For instance, logging and edge effects can make a forest patch more flammable 39 , but these disturbances are often not captured by ESMs. Improvements in the ability of ESMs to predict future climatic conditions are also required. One way is to identify emergent constraints 100 , lowering ESMs variations in their projections of the Amazonian climate. Also, fully coupled ESMs simulations are needed to allow estimates of land-atmosphere feedbacks, which may adjust climatic and ecosystem responses. Another way to improve our understanding of the critical thresholds for Amazonian resilience and how these link to climatic conditions and to greenhouse gas concentrations is through factorial simulations with ESMs. In sum, although our study may not deliver a set of reliable and comprehensive equations to parameterize processes impacting Amazon forest dynamics, required for implementation in ESMs, we highlight many of the missing modelled processes.

Implications for governance

Forest resilience is changing across the Amazon as disturbance regimes intensify (Fig. 1 ). Although most recent models agree that a large-scale collapse of the Amazon forest is unlikely within the twenty-first century 2 , our findings suggest that interactions and synergies among different disturbances (for example, frequent extreme hot droughts and forest fires) could trigger unexpected ecosystem transitions even in remote and central parts of the system 101 . In 2012, Davidson et al. 102 demonstrated how the Amazon basin was experiencing a transition to a ‘disturbance-dominated regime’ related to climatic and land use changes, even though at the time, annual deforestation rates were declining owing to new forms of governance 103 . Recent policy and approaches to Amazon development, however, accelerated deforestation that reached 13,000 km 2 in the Brazilian Amazon in 2021 ( http://terrabrasilis.dpi.inpe.br ). The southeastern region has already turned into a source of greenhouse gases to the atmosphere 48 . The consequences of losing the Amazon forest, or even parts of it, imply that we must follow a precautionary approach—that is, we must take actions that contribute to maintain the Amazon forest within safe boundaries 12 . Keeping the Amazon forest resilient depends firstly on humanity’s ability to stop greenhouse gas emissions, mitigating the impacts of global warming on regional climatic conditions 2 . At the local scale, two practical and effective actions need to be addressed to reinforce forest–rainfall feedbacks that are crucial for the resilience of the Amazon forest 4 , 37 : (1) ending deforestation and forest degradation; and (2) promoting forest restoration in degraded areas. Expanding protected areas and Indigenous territories can largely contribute to these actions. Our findings suggest a list of thresholds, disturbances and feedbacks that, if well managed, can help maintain the Amazon forest within a safe operating space for future generations.

Our study site was the area of the Amazon basin, considering large areas of tropical savanna biome along the northern portion of the Brazilian Cerrado, the Gran Savana in Venezuela and the Llanos de Moxos in Bolivia, as well as the Orinoco basin to the north, and eastern parts of the Andes to the west. The area includes also high Andean landscapes with puna and paramo ecosystems. We chose this contour to allow better communication with the MapBiomas Amazonian Project (2022; https://amazonia.mapbiomas.org ). For specific interpretation of our results, we considered the contour of the current extension of the Amazon forest biome, which excludes surrounding tropical savanna biomes.

We used the Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Continuous Fields (VCF) data (MOD44B version 6; https://lpdaac.usgs.gov/products/mod44bv006/ ) for the year 2001 at 250-m resolution 124 to reanalyse tree cover distributions within the Amazon basin, refining estimates of bistability ranges and critical thresholds in rainfall conditions from previous studies. Although MODIS VCF can contain errors within lower tree cover ranges and should not be used to test for bistability between grasslands and savannas 125 , the dataset is relatively robust for assessing bistability within the tree cover range of forests and savannas 126 , as also shown by low uncertainty (standard deviation of tree cover estimates) across the Amazon (Extended Data Fig. 8 ).

We used the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS; https://www.chc.ucsb.edu/data/chirps ) 127 to estimate mean annual rainfall and rainfall seasonality for the present across the Amazon basin, based on monthly means from 1981 to 2020, at a 0.05° spatial resolution.

We used the Climatic Research Unit (CRU; https://www.uea.ac.uk/groups-and-centres/climatic-research-unit ) 128 to estimate mean annual temperature for the present across the Amazon basin, based on monthly means from 1981 to 2020, at a 0.5° spatial resolution.

To mask deforested areas until 2020, we used information from the MapBiomas Amazonia Project (2022), collection 3, of Amazonian Annual Land Cover and Land Use Map Series ( https://amazonia.mapbiomas.org ).

To assess forest fire distribution across the Amazon forest biome and in relation to road networks, we used burnt area fire data obtained from the AQUA sensor onboard the MODIS satellite. Only active fires with a confidence level of 80% or higher were selected. The data are derived from MODIS MCD14ML (collection 6) 129 , available in Fire Information for Resource Management System (FIRMS). The data were adjusted to a spatial resolution of 1 km.

Potential analysis

Using potential analysis 130 , an empirical stability landscape was constructed based on spatial distributions of tree cover (excluding areas deforested until 2020; https://amazonia.mapbiomas.org ) against mean annual precipitation, MCWD and DSL. Here we followed the methodology of Hirota et al. 104 . For bins of each of the variables, the probability density of tree cover was determined using the MATLAB function ksdensity. Local maxima of the resulting probability density function are considered to be stable equilibria, in which local maxima below a threshold value of 0.005 were ignored. Based on sensitivity tests (see below), we chose the intermediate values of the sensitivity parameter for each analysis, which resulted in the critical thresholds most similar to the ones previously published in the literature.

Sensitivity tests of the potential analysis

We smoothed the densities of tree cover with the MATLAB kernel smoothing function ksdensity. Following Hirota et al. 104 , we used a flexible bandwidth ( h ) according to Silverman’s rule of thumb 131 : h  = 1.06 σn 1/5 , where σ is the standard deviation of the tree cover distribution and n is the number of points. To ignore small bumps in the frequency distributions, we used a dimensionless sensitivity parameter. This parameter filters out weak modes in the distributions such that a higher value implies a stricter criterion to detect a significant mode. In the manuscript, we used a value of 0.005. For different values of this sensitivity parameter, we here test the estimated critical thresholds and bistability ranges (Extended Data Table 2 ). We inferred stable and unstable states of tree cover (minima and maxima in the potentials) for moving windows of the climatic variables. For mean annual precipitation, we used increments of 10 mm yr −1 between 0 and 3500 mm yr −1 . For dry season length, we used increments of 0.1 months between 0 and 12 months. For MCWD, we used increments of 10 mm between −800 mm and 0 mm.

Transition potential

We quantified a relative ecosystem transition potential across the Amazon forest biome (excluding accumulated deforestation; https://amazonia.mapbiomas.org ) to produce a simple spatial measure that can be useful for governance. For this, we combined information per pixel, at 5 km resolution, about different disturbances related to climatic and human disturbances, as well as high-governance areas within protected areas and Indigenous territories. We used values of significant slopes of the dry season (July–October) mean temperature between 1981 and 2020 ( P  < 0.1), estimated using simple linear regressions (at 0.5° resolution from CRU) (Fig. 1a ). Ecosystem stability classes (stable forest, bistable and stable savanna as in Extended Data Fig. 1 ) were estimated using simple linear regression slopes of annual rainfall between 1981 and 2020 ( P  < 0.1) (at 0.05° resolution from CHIRPS), which we extrapolated to 2050 (Fig. 1b and Extended Data Fig. 3 ). Distribution of areas affected by repeated extreme drought events (Fig. 1c ) were defined when the time series (2001–2018) of the MCWD reached two standard deviation anomalies from historical mean. Extreme droughts were obtained from Lapola et al. 39 , based on Climatic Research Unit gridded Time Series (CRU TS 4.0) datasets for precipitation and evapotranspiration. The network of roads (paved and unpaved) across the Amazon forest biome (Fig. 1d ) was obtained from the Amazon Network of Georeferenced Socio-Environmental Information (RAISG; https://geo2.socioambiental.org/raisg ). Protected areas (PAs) and Indigenous territories (Fig. 1e ) were also obtained from RAISG, and include both sustainable-use and restricted-use protected areas managed by national or sub-national governments, together with officially recognized and proposed Indigenous territories. We combined these different disturbance layers by adding a value for each layer in the following way: (1) slopes of dry season temperature change (as in Fig. 1a , multiplied by 10, thus between −0.1 and +0.6); (2) ecosystem stability classes estimated for year 2050 (as in Fig. 1b ), with 0 for stable forest, +1 for bistable and +2 for stable savanna; (3) accumulated impacts from repeated extreme drought events (from 0 to 5 events), with +0.2 for each event; (4) road-related human impacts, with +1 for pixels within 10 km from a road; and (5) protected areas and Indigenous territories as areas with lower exposure to human (land use) disturbances, such as deforestation and forest fires, with −1 for pixels inside these areas. The sum of these layers revealed relative spatial variation in ecosystem transition potential by 2050 across the Amazon (Fig. 1f ), ranging from −1 (low potential) to 4 (very high potential).

Atmospheric moisture tracking

To determine the atmospheric moisture flows between the Amazonian countries, we use the Lagrangian atmospheric moisture tracking model UTrack 132 . The model tracks the atmospheric trajectories of parcels of moisture, updates their coordinates at each time step of 0.1 h and allocates moisture to a target location in case of precipitation. For each millimetre of evapotranspiration, 100 parcels are released into the atmosphere. Their trajectories are forced with evaporation, precipitation, and wind speed estimates from the ERA5 reanalysis product at 0.25° horizontal resolution for 25 atmospheric layers 133 . Here we use the runs from Tuinenburg et al. 134 , who published monthly climatological mean (2008–2017) moisture flows between each pair of 0.5° grid cells on Earth. We aggregated these monthly flows, resulting in mean annual moisture flows between all Amazonian countries during 2008–2017. For more details of the model runs, we refer to Tuinenburg and Staal 132 and Tuinenburg et al. 134 .

Reporting summary

Further information on research design is available in the  Nature Portfolio Reporting Summary linked to this article.

Data availability

All data supporting the findings of this study are openly available and their sources are presented in the Methods.

Science Panel for the Amazon. Amazon Assessment Report 2021 (2021); www.theamazonwewant.org/amazon-assessment-report-2021/ .

IPCC. Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) https://www.ipcc.ch/report/ar6/wg1/#FullReport (Cambridge Univ. Press, 2021).

Armstrong McKay, D. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377 , abn7950 (2022).

Article   Google Scholar  

Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8 , 539–543 (2018).

Article   ADS   Google Scholar  

Cano, I. M. et al. Abrupt loss and uncertain recovery from fires of Amazon forests under low climate mitigation scenarios. Proc. Natl Acad. Sci. USA 119 , e2203200119 (2022).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Parry, I. M., Ritchie, P. D. L. & Cox, P. M. Evidence of localised Amazon rainforest dieback in CMIP6 models. Earth Syst. Dynam. 13 , 1667–1675 (2022).

Bromham, L. et al. Global predictors of language endangerment and the future of linguistic diversity. Nat. Ecol. Evol. 6 , 163–173 (2022).

Article   PubMed   Google Scholar  

Gomes, V. H. F., Vieira, I. C. G., Salomão, R. P. & ter Steege, H. Amazonian tree species threatened by deforestation and climate change. Nat. Clim. Change 9 , 547–553 (2019).

Cámara-Leret, R., Fortuna, M. A. & Bascompte, J. Indigenous knowledge networks in the face of global change. Proc. Natl Acad. Sci. USA 116 , 9913–9918 (2019).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413 , 591–596 (2001).

Article   ADS   CAS   PubMed   Google Scholar  

Rockstrom, J. et al. A safe operating space for humanity. Nature 461 , 472–475 (2009).

Article   ADS   PubMed   Google Scholar  

Scheffer, M. et al. Creating a safe operating space for iconic ecosystems. Science 347 , 1317–1319 (2015).

van Nes, E. H. et al. What do you mean, ‘tipping point’? Trends Ecol. Evol. 31 , 902–904 (2016).

Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105 , 1786–1793 (2008).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Flores, B. M. & Staal, A. Feedback in tropical forests of the Anthropocene. Global Change Biol. 28 , 5041–5061 (2022).

Article   CAS   Google Scholar  

Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

Scheffer, M. et al. Anticipating critical transitions. Science 338 , 344–348 (2012).

Holling, C. S. Engineering Resilience versus Ecological Resilience (National Academy Press, 1996).

Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330 , 927–931 (2010).

Wang, X. et al. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature 541 , 204–207 (2017).

Kukla, T. et al. The resilience of Amazon tree cover to past and present drying. Global Planet. Change 202 , 103520 (2021).

Clement, C. R. et al. Disentangling domestication from food production systems in the neotropics. Quaternary 4 , 4 (2021).

Mayle, F. E. & Power, M. J. Impact of a drier Early–Mid-Holocene climate upon Amazonian forests. Phil. Trans. R. Soc. B 363 , 1829–1838 (2008).

Article   PubMed   PubMed Central   Google Scholar  

Montoya, E. & Rull, V. Gran Sabana fires (SE Venezuela): a paleoecological perspective. Quat. Sci. Rev. 30 , 3430–3444 (2011).

Rull, V., Montoya, E., Vegas-Vilarrúbia, T. & Ballesteros, T. New insights on palaeofires and savannisation in northern South America. Quat. Sci. Rev. 122 , 158–165 (2015).

Rossetti, D. F. et al. Unfolding long-term Late Pleistocene-Holocene disturbances of forest communities in the southwestern Amazonian lowlands. Ecosphere 9 , e02457 (2018).

Prance, G. T. & Schubart, H. O. R. Notes on the vegetation of Amazonia I. A preliminary note on the origin of the open white sand campinas of the lower Rio Negro. Brittonia 30 , 60 (1978).

Wright, J. L. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and central Brazilian savannas. Glob. Change Biol. 27 , 136–150 (2021).

Article   ADS   CAS   Google Scholar  

van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO 2 fertilization but water-use efficiency increased. Nat. Geosci. 8 , 24–28 (2015).

Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6 , 1225–1230 (2020).

Article   CAS   PubMed   Google Scholar  

Marengo, J. A., Jimenez, J. C., Espinoza, J.-C., Cunha, A. P. & Aragão, L. E. O. Increased climate pressure on the agricultural frontier in the Eastern Amazonia–Cerrado transition zone. Sci. Rep. 12 , 457 (2022).

Tavares, J. V. et al. Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests. Nature 617 , 111–117 (2023).

Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12 , 271–278 (2022).

Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621 , 105–111 (2023).

Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117 , 11350–11355 (2020).

Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368 , 869–874 (2020).

Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8 , 14681 (2017).

Bullock, E. L., Woodcock, C. E., Souza, C. Jr & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Global Change Biol. 26 , 2956–2969 (2020).

Lapola, D. M. et al. The drivers and impacts of Amazon forest degradation. Science 379 , eabp8622 (2023).

Feng, Y., Negrón-Juárez, R. I., Romps, D. M. & Chambers, J. Q. Amazon windthrow disturbances are likely to increase with storm frequency under global warming. Nat. Commun. 14 , 101 (2023).

Anderson, L. O. et al. Vulnerability of Amazonian forests to repeated droughts. Phil. Trans. R. Soc. B 373 , 20170411 (2018).

Staal, A. et al. Feedback between drought and deforestation in the Amazon. Environ. Res. Lett. 15 , 044024 (2020).

Alencar, A. A., Brando, P. M., Asner, G. P. & Putz, F. E. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol. Appl. 25 , 1493–1505 (2015).

Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9 , 536 (2018).

Silvério, D. V. et al. Intensification of fire regimes and forest loss in the Território Indígena do Xingu. Environ. Res. Lett. 17 , 045012 (2022).

Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519 , 344–348 (2015).

Esquivel‐Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25 , 39–56 (2019).

Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595 , 388–393 (2021).

Nepstad, D. et al. Inhibition of Amazon deforestation and fire by parks and Indigenous lands: inhibition of Amazon deforestation and fire. Conserv. Biol. 20 , 65–73 (2006).

Botelho, J., Costa, S. C. P., Ribeiro, J. G. & Souza, C. M. Mapping roads in the Brazilian Amazon with artificial intelligence and Sentinel-2. Remote Sensing 14 , 3625 (2022).

Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369 , 1378–1382 (2020).

Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free‐air CO 2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2 . New Phytol. 165 , 351–372 (2005).

Kooperman, G. J. et al. Forest response to rising CO 2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8 , 434–440 (2018).

Lapola, D. M., Oyama, M. D. & Nobre, C. A. Exploring the range of climate biome projections for tropical South America: the role of CO 2 fertilization and seasonality: future biome distribution in South America. Global Biogeochem. Cycles 23 , https://doi.org/10.1029/2008GB003357 (2009).

Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11 , 4241 (2020).

Lammertsma, E. I. et al. Global CO 2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proc. Natl Acad. Sci. USA 108 , 4035–4040 (2011).

Terrer, C. et al. Nitrogen and phosphorus constrain the CO 2 fertilization of global plant biomass. Nat. Clim. Change 9 , 684–689 (2019).

Ellsworth, D. S. et al. Elevated CO 2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 7 , 279–282 (2017).

Quesada, C. A. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9 , 2203–2246 (2012).

Flores, B. M. et al. Soil erosion as a resilience drain in disturbed tropical forests. Plant Soil https://doi.org/10.1007/s11104-019-04097-8 (2020).

Longo, M. et al. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytol. 219 , 914–931 (2018).

Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc. Natl Acad. Sci. USA 113 , 793–797 (2016).

Staver, A. C. et al. Thinner bark increases sensitivity of wetter Amazonian tropical forests to fire. Ecol. Lett. 23 , 99–106 (2020).

Mattos, C. R. C. et al. Double stress of waterlogging and drought drives forest–savanna coexistence. Proc. Natl Acad. Sci. USA 120 , e2301255120 (2023).

Flores, B. M. et al. Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc. Natl Acad. Sci. USA 114 , 4442–4446 (2017).

Marengo, J. A. & Espinoza, J. C. Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Int. J. Climatol. 36 , 1033–1050 (2016).

Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7 , 41489 (2017).

Alexander, C. et al. Linking Indigenous and scientific knowledge of climate change. BioScience 61 , 477–484 (2011).

Ford, J. D. et al. The resilience of Indigenous peoples to environmental change. One Earth 2 , 532–543 (2020).

Cooper, G. S., Willcock, S. & Dearing, J. A. Regime shifts occur disproportionately faster in larger ecosystems. Nat. Commun. 11 , 1175 (2020).

Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112 , E5777–E5786 (2015).

Salazar, L. F. & Nobre, C. A. Climate change and thresholds of biome shifts in Amazonia: climate change and Amazon biome shift. Geophys. Res. Lett. 37 , https://doi.org/10.1029/2010GL043538 (2010).

Jones, C., Lowe, J., Liddicoat, S. & Betts, R. Committed terrestrial ecosystem changes due to climate change. Nat. Geosci. 2 , 484–487 (2009).

Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Change 6 , 649–653 (2016).

Chai, Y. et al. Constraining Amazonian land surface temperature sensitivity to precipitation and the probability of forest dieback. npj Clim. Atmos. Sci. 4 , 6 (2021).

Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl Acad. Sci. USA 111 , 6347–6352 (2014).

Berenguer, E. et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl Acad. Sci. USA 118 , e2019377118 (2021).

Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11 , 4978 (2020).

Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334 , 230–232 (2011).

Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106 , 20610–20615 (2009).

Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113 , 10759–10768 (2016).

Burton, C. et al. South American fires and their impacts on ecosystems increase with continued emissions. Clim. Resil. Sustain. 1 , e8 (2022).

Google Scholar  

Smith, C. C. et al. Old-growth forest loss and secondary forest recovery across Amazonian countries. Environ. Res. Lett. 16 , 085009 (2021).

Brando, P. M. et al. Prolonged tropical forest degradation due to compounding disturbances: Implications for CO 2 and H 2 O fluxes. Glob. Change Biol. 25 , 2855–2868 (2019).

Mesquita, R. C. G., Ickes, K., Ganade, G. & Williamson, G. B. Alternative successional pathways in the Amazon Basin: successional pathways in the Amazon. J. Ecol. 89 , 528–537 (2001).

Jakovac, C. C., Peña-Claros, M., Kuyper, T. W. & Bongers, F. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103 , 67–77 (2015).

Barlow, J. & Peres, C. A. Fire-mediated dieback and compositional cascade in an Amazonian forest. Phil. Trans. R. Soc. B 363 , 1787–1794 (2008).

Jakovac, A. C. C., Bentos, T. V., Mesquita, R. C. G. & Williamson, G. B. Age and light effects on seedling growth in two alternative secondary successions in central Amazonia. Plant Ecol. Divers. 7 , 349–358 (2014).

Mazzochini, G. G. & Camargo, J. L. C. Understory plant interactions along a successional gradient in Central Amazon. Plant Soil https://doi.org/10.1007/s11104-019-04100-2 (2020).

Schnitzer, S. A. & Bongers, F. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms: Increasing lianas in tropical forests. Ecology Letters 14 , 397–406 (2011).

Tymen, B. et al. Evidence for arrested succession in a liana-infested Amazonian forest. J Ecol 104 , 149–159 (2016).

da Silva, S. S. et al. Increasing bamboo dominance in southwestern Amazon forests following intensification of drought-mediated fires. For. Ecol. Manag. 490 , 119139 (2021).

Carvalho, A. Lde et al. Bamboo-dominated forests of the southwest Amazon: detection, spatial extent, life cycle length and flowering waves. PLoS ONE 8 , e54852 (2013).

Adeney, J. M., Christensen, N. L., Vicentini, A. & Cohn‐Haft, M. White‐sand ecosystems in Amazonia. Biotropica 48 , 7–23 (2016).

Flores, B. M. & Holmgren, M. White-sand savannas expand at the core of the Amazon after forest wildfires. Ecosystems 24 , 1624–1637 (2021).

Veldman, J. W. & Putz, F. E. Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biol. Conserv. 144 , 1419–1429 (2011).

Silvério, D. V. et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Phil. Trans. R. Soc. B 368 , 20120427 (2013).

Rull, V. A palynological record of a secondary succession after fire in the Gran Sabana, Venezuela. J. Quat. Sci. 14 , 137–152 (1999).

Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6 , 1032–1036 (2016).

Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9 , 269–278 (2019).

Willcock, S., Cooper, G. S., Addy, J. & Dearing, J. A. Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers. Nat. Sustain 6 , 1331–1342 (2023).

Davidson, E. A. et al. The Amazon basin in transition. Nature 481 , 321–328 (2012).

Hecht, S. B. From eco-catastrophe to zero deforestation? Interdisciplinarities, politics, environmentalisms and reduced clearing in Amazonia. Envir. Conserv. 39 , 4–19 (2012).

Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334 , 232–235 (2011).

Hawes, J. E. et al. A large‐scale assessment of plant dispersal mode and seed traits across human‐modified Amazonian forests. J. Ecol. 108 , 1373–1385 (2020).

Flores, B. M. & Holmgren, M. Why forest fails to recover after repeated wildfires in Amazonian floodplains? Experimental evidence on tree recruitment limitation. J. Ecol. 109 , 3473–3486 (2021).

ter Steege, H. et al. Biased-corrected richness estimates for the Amazonian tree flora. Sci. Rep. 10 , 10130 (2020).

Poorter, L. et al. Diversity enhances carbon storage in tropical forests: Carbon storage in tropical forests. Global Ecol. Biogeogr. 24 , 1314–1328 (2015).

Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2 , 95–113 (1999).

Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1 , 488–494 (2003).

Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the Neotropics. Ecography 40 , 618–629 (2017).

Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333 , 301–306 (2011).

Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1 , 369–374 (2018).

Morcote-Ríos, G., Aceituno, F. J., Iriarte, J., Robinson, M. & Chaparro-Cárdenas, J. L. Colonisation and early peopling of the Colombian Amazon during the Late Pleistocene and the Early Holocene: new evidence from La Serranía La Lindosa. Quat. Int. 578 , 5–19 (2021).

Levis, C. et al. How people domesticated Amazonian forests. Front. Ecol. Evol. 5 , 171 (2018).

Clement, C. R. et al. The domestication of Amazonia before European conquest. Proc. R. Soc. B. 282 , 20150813 (2015).

Levis, C. et al. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355 , 925–931 (2017).

Coelho, S. D. et al. Eighty-four per cent of all Amazonian arboreal plant individuals are useful to humans. PLoS ONE 16 , e0257875 (2021).

de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3 , 1007–1017 (2019).

Furquim, L. P. et al. Facing change through diversity: resilience and diversification of plant management strategies during the Mid to Late Holocene Transition at the Monte Castelo shellmound, SW Amazonia. Quaternary 4 , 8 (2021).

Schmidt, M. V. C. et al. Indigenous knowledge and forest succession management in the Brazilian Amazon: contributions to reforestation of degraded areas. Front. For. Glob. Change 4 , 605925 (2021).

Tomioka Nilsson, M. S. & Fearnside, P. M. Yanomami mobility and its effects on the forest landscape. Hum. Ecol. 39 , 235–256 (2011).

Cámara-Leret, R. & Bascompte, J. Language extinction triggers the loss of unique medicinal knowledge. Proc. Natl Acad. Sci. USA 118 , e2103683118 (2021).

DiMiceli, C. et al. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid V006. https://doi.org/10.5067/MODIS/MOD44B.006 (2015).

Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth 6 , 427–448 (2013).

Staver, A. C. & Hansen, M. C. Analysis of stable states in global savannas: is the CART pulling the horse? – a comment. Global Ecol. Biogeogr. 24 , 985–987 (2015).

Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2 , 150066 (2015).

Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25 , 693–712 (2005).

Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178 , 31–41 (2016).

Livina, V. N., Kwasniok, F. & Lenton, T. M. Potential analysis reveals changing number of climate states during the last 60 kyr. Clim. Past 6 , 77–82 (2010).

Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman & Hall/CRC Taylor & Francis Group, 1998).

Tuinenburg, O. A. & Staal, A. Tracking the global flows of atmospheric moisture and associated uncertainties. Hydrol. Earth Syst. Sci. 24 , 2419–2435 (2020).

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146 , 1999–2049 (2020).

Tuinenburg, O. A., Theeuwen, J. J. E. & Staal, A. High-resolution global atmospheric moisture connections from evaporation to precipitation. Earth Syst. Sci. Data 12 , 3177–3188 (2020).

Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytol. 221 , 1457–1465 (2019).

Mattos, C. R. C. et al. Rainfall and topographic position determine tree embolism resistance in Amazônia and Cerrado sites. Environ. Res. Lett. 18 , 114009 (2023).

NASA JPL. NASA Shuttle Radar Topography Mission Global 1 arc second. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 (2013).

Hess, L. L. et al. Wetlands of the Lowland Amazon Basin: Extent, Vegetative Cover, and Dual-season Inundated Area as Mapped with JERS-1 Synthetic Aperture Radar. Wetlands 35 , 745–756 (2015).

Eberhard, D. M., Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World . (SIL International, 2021).

Download references

Acknowledgements

This work was inspired by the Science Panel for the Amazon (SPA) initiative ( https://www.theamazonwewant.org/ ) that produced the first Amazon Assessment Report (2021). The authors thank C. Smith for providing deforestation rates data used in Extended Data Fig. 5b . B.M.F. and M.H. were supported by Instituto Serrapilheira (Serra-1709-18983) and C.J. (R-2111-40341). A.S. acknowledges funding from the Dutch Research Council (NWO) under the Talent Program Grant VI.Veni.202.170. R.A.B. and D.M.L. were supported by the AmazonFACE programme funded by the UK Foreign, Commonwealth and Development Office (FCDO) and Brazilian Ministry of Science, Technology and Innovation (MCTI). R.A.B. was additionally supported by the Met Office Climate Science for Service Partnership (CSSP) Brazil project funded by the UK Department for Science, Innovation and Technology (DSIT), and D.M.L. was additionally supported by FAPESP (grant no. 2020/08940-6) and CNPq (grant no. 309074/2021-5). C.L. thanks CNPq (proc. 159440/2018-1 and 400369/2021-4) and Brazil LAB (Princeton University) for postdoctoral fellowships. A.E.-M. is supported by the UKRI TreeScapes MEMBRA (NE/V021346/1), the Royal Society (RGS\R1\221115), the ERC TreeMort project (758873) and the CESAB Syntreesys project. R.S.O. received a CNPq productivity scholarship and funding from NERC-FAPESP 2019/07773-1. S.B.H. is supported by the Geneva Graduate Institute research funds, and UCLA’s committee on research. J.A.M. is supported by the National Institute of Science and Technology for Climate Change Phase 2 under CNPq grant 465501/2014-1; FAPESP grants 2014/50848-9, the National Coordination for Higher Education and Training (CAPES) grant 88887.136402-00INCT. L.S.B. received FAPESP grant 2013/50531-0. D.N. and N.B. acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 820970. N.B. has received further funding from the Volkswagen foundation, the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 956170, as well as from the German Federal Ministry of Education and Research under grant no. 01LS2001A.

Author information

Authors and affiliations.

Graduate Program in Ecology, Federal University of Santa Catarina, Florianopolis, Brazil

Bernardo M. Flores, Carolina Levis & Marina Hirota

Geosciences Barcelona, Spanish National Research Council, Barcelona, Spain

Encarni Montoya

Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany

Boris Sakschewski, Da Nian & Niklas Boers

Institute of Advanced Studies, University of São Paulo, São Paulo, Brazil

Nathália Nascimento & Carlos A. Nobre

Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands

Met Office Hadley Centre, Exeter, UK

Richard A. Betts

Global Systems Institute, University of Exeter, Exeter, UK

Center for Meteorological and Climatic Research Applied to Agriculture, University of Campinas, Campinas, Brazil

David M. Lapola

School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

Adriane Esquível-Muelbert

Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK

Department of Plant Sciences, Federal University of Santa Catarina, Florianopolis, Brazil

Catarina Jakovac

Department of Plant Biology, University of Campinas, Campinas, Brazil

Rafael S. Oliveira & Marina Hirota

Division of Impacts, Adaptation and Vulnerabilities (DIIAV), National Institute for Space Research, São José dos Campos, Brazil

Laura S. Borma & Luciana V. Gatti

Earth System Modelling, School of Engineering and Design, Technical University of Munich, Munich, Germany

Niklas Boers

Luskin School for Public Affairs and Institute of the Environment, University of California, Los Angeles, CA, USA

Susanna B. Hecht

Naturalis Biodiversity Center, Leiden, The Netherlands

Hans ter Steege

Quantitative Biodiversity Dynamics, Utrecht University, Utrecht, The Netherlands

Science Panel for the Amazon (SPA), São José dos Campos, Brazil

Julia Arieira

Sustainable Development Solutions Network, New York, NY, USA

Isabella L. Lucas

Environmental Change Institute, University of Oxford, Oxford, UK

Erika Berenguer

Centro Nacional de Monitoramento e Alerta de Desastres Naturais, São José dos Campos, Brazil

José A. Marengo

Graduate Program in Natural Disasters, UNESP/CEMADEN, São José dos Campos, Brazil

Graduate School of International Studies, Korea University, Seoul, Korea

Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA

Caio R. C. Mattos

Group IpES, Department of Physics, Federal University of Santa Catarina, Florianopolis, Brazil

Marina Hirota

You can also search for this author in PubMed   Google Scholar

Contributions

B.M.F. and M.H. conceived the study. B.M.F. reviewed the literature, with inputs from all authors. B.M.F., M.H., N.N., A.S., C.L., D.N, H.t.S. and C.R.C.M. assembled datasets. M.H. analysed temperature and rainfall trends. B.M.F. and N.N. produced the maps in main figures and calculated transition potential. A.S. performed potential analysis and atmospheric moisture tracking. B.M.F. produced the figures and wrote the manuscript, with substantial inputs from all authors. B.S. wrote the first version of the ‘Prospects for modelling Amazon forest dynamics’ section, with inputs from B.M.F and M.H.

Corresponding authors

Correspondence to Bernardo M. Flores or Marina Hirota .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature thanks Chris Huntingford and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer review reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended data fig. 1 alternative stable states in amazonian tree cover relative to rainfall conditions..

Potential analysis of tree cover distributions across rainfall gradients in the Amazon basin suggest the existence of critical thresholds and alternative stable states in the system. For this, we excluded accumulated deforestation until 2020 and included large areas of tropical savanna biome in the periphery of the Amazon basin (see  Methods ). Solid black lines indicate two stable equilibria. Small grey arrows indicate the direction towards equilibrium. (a) The overlap between ~ 1,000 and 1,800 mm of annual rainfall suggests that two alternative stable states may exist (bistability): a high tree cover state ~ 80 % (forests), and a low tree cover state ~ 20% (savannas). Tree cover around 50 % is rare, indicating an unstable state. Below 1,000 mm of annual rainfall, forests are rare, indicating a potential critical threshold for abrupt forest transition into a low tree cover state 79 , 104 (arrow 1). Between 1,000 and 1,800 mm of annual rainfall, the existence of alternative stable states implies that forests can shift to a low tree cover stable state in response to disturbances (arrow 2). Above 1,800 mm of annual rainfall, low tree cover becomes rare, indicating a potential critical threshold for an abrupt transition into a high tree cover state. In this stable forest state, forests are expected to always recover after disturbances (arrow 3), although composition may change 47 , 85 . (b) Currently, the stable savanna state covers 1 % of the Amazon forest biome, bistable areas cover 13 % of the biome (less than previous analysis using broader geographical ranges 78 ) and the stable forest state covers 86 % of the biome. Similar analyses using the maximum cumulative water deficit (c) and the dry season length (d) also suggest the existence of critical thresholds and alternative stable states. When combined, these critical thresholds in rainfall conditions could result in a tipping point of the Amazon forest in terms of water stress, but other factors may play a role, such as groundwater availability 64 . MODIS VCF may contain some level of uncertainty for low tree cover values, as shown by the standard deviation of tree cover estimates across the Amazon (Extended Data Fig. 8 ). However, the dataset is relatively robust for assessing bistability within the tree cover range between forest and savanna 126 .

Extended Data Fig. 2 Changes in dry-season temperatures across the Amazon basin.

(a) Dry season temperature averaged from mean annual data observed between 1981 and 2010. (b) Changes in dry season mean temperature based on the difference between the projected future (2021−2050) and observed historical (1981−2010) climatologies. Future climatology was obtained from the estimated slopes using historical CRU data 128 (shown in Fig. 1a ). (c, d) Changes in the distributions of dry season mean and maximum temperatures for the Amazon basin. (e) Correlation between dry-season mean and maximum temperatures observed (1981–2010) across the Amazon basin ( r  = 0.95).

Extended Data Fig. 3 Changes in annual precipitation and ecosystem stability across the Amazon forest biome.

(a) Slopes of annual rainfall change between 1981 and 2020 estimated using simple regressions (only areas with significant slopes, p  < 0.1). (b) Changes in ecosystem stability classes projected for year 2050, based on significant slopes in (a) and critical thresholds in annual rainfall conditions estimated in Extended Data Fig. 1 . Data obtained from Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), at 0.05° spatial resolution 127 .

Extended Data Fig. 4 Changes in ecosystem stability by 2050 across the Amazon based on annual rainfall projected by CMIP6 models.

(a) Changes in stability classes estimated using an ensemble with the five CMIP6 models that include vegetation modules (coupled for climate-vegetation feedbacks) for two emission scenarios (Shared Socio-economic Pathways - SSPs). (b) Changes in stability classes estimated using an ensemble with all 33 CMIP6 models for the same emission scenarios. Stability changes may occur between stable forest (F), stable savanna (S) and bistable (B) classes, based on the bistability range of 1,000 – 1,800 mm in annual rainfall, estimated from current rainfall conditions (see Extended Data Fig. 1 ). Projections are based on climate models from the 6 th Phase of the Coupled Model Intercomparison Project (CMIP6). SSP2-4.5 is a low-emission scenario of future global warming and SSP5-8.5 is a high-emission scenario. The five coupled models analysed separately in (a) were: EC-Earth3-Veg, GFDL-ESM4, MPI-ESM1-2-LR, TaiESM1 and UKESM1-0-LL (Supplementary Information Table 1 ).

Extended Data Fig. 5 Deforestation continues to expand within the Amazon forest system.

(a) Map highlighting deforestation and fire activity between 2012 and 2021, a period when environmental governance began to weaken again, as indicated by increasing rates of annual deforestation in (b). In (b), annual deforestation rates for the entire Amazon biome were adapted with permission from Smith et al. 83 .

Extended Data Fig. 6 Environmental heterogeneity in the Amazon forest system.

Heterogeneity involves myriad factors, but two in particular, related to water availability, were shown to contribute to landscape-scale heterogeneity in forest resilience; topography shapes fine-scale variations of forest drought-tolerance 135 , 136 , and floodplains may reduce forest resilience by increasing vulnerability to wildfires 65 . Datasets: topography is shown by the Shuttle Radar Topography Mission (SRTM; https://earthexplorer.usgs.gov/ ) 137 at 90 m resolution; floodplains and uplands are separated with the Amazon wetlands mask 138 at 90 m resolution.

Extended Data Fig. 7 The Amazon is biologically and culturally diverse.

(a) Tree species richness and (b) language richness illustrate how biological and cultural diversity varies across the Amazon. Diverse tree communities and human cultures contribute to increasing forest resilience in various ways that are being undermined by land-use and climatic changes. Datasets: (a) Amazon Tree Diversity Network (ATDN, https://atdn.myspecies.info ). (b) World Language Mapping System (WLMS) obtained under license from Ethnologue 139 .

Extended Data Fig. 8 Uncertainty of the MODIS VCF dataset across the Amazon basin.

Map shows standard deviation (SD) of tree cover estimates from MODIS VCF 124 . We masked deforested areas until 2020 using the MapBiomas Amazonia Project (2022; https://amazonia.mapbiomas.org ).

Supplementary information

Supplementary information, reporting summary, peer review file, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Flores, B.M., Montoya, E., Sakschewski, B. et al. Critical transitions in the Amazon forest system. Nature 626 , 555–564 (2024). https://doi.org/10.1038/s41586-023-06970-0

Download citation

Received : 29 August 2022

Accepted : 13 December 2023

Published : 14 February 2024

Issue Date : 15 February 2024

DOI : https://doi.org/10.1038/s41586-023-06970-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

paper research example

Our next-generation model: Gemini 1.5

Feb 15, 2024

The model delivers dramatically enhanced performance, with a breakthrough in long-context understanding across modalities.

SundarPichai_2x.jpg

A note from Google and Alphabet CEO Sundar Pichai:

Last week, we rolled out our most capable model, Gemini 1.0 Ultra, and took a significant step forward in making Google products more helpful, starting with Gemini Advanced . Today, developers and Cloud customers can begin building with 1.0 Ultra too — with our Gemini API in AI Studio and in Vertex AI .

Our teams continue pushing the frontiers of our latest models with safety at the core. They are making rapid progress. In fact, we’re ready to introduce the next generation: Gemini 1.5. It shows dramatic improvements across a number of dimensions and 1.5 Pro achieves comparable quality to 1.0 Ultra, while using less compute.

This new generation also delivers a breakthrough in long-context understanding. We’ve been able to significantly increase the amount of information our models can process — running up to 1 million tokens consistently, achieving the longest context window of any large-scale foundation model yet.

Longer context windows show us the promise of what is possible. They will enable entirely new capabilities and help developers build much more useful models and applications. We’re excited to offer a limited preview of this experimental feature to developers and enterprise customers. Demis shares more on capabilities, safety and availability below.

Introducing Gemini 1.5

By Demis Hassabis, CEO of Google DeepMind, on behalf of the Gemini team

This is an exciting time for AI. New advances in the field have the potential to make AI more helpful for billions of people over the coming years. Since introducing Gemini 1.0 , we’ve been testing, refining and enhancing its capabilities.

Today, we’re announcing our next-generation model: Gemini 1.5.

Gemini 1.5 delivers dramatically enhanced performance. It represents a step change in our approach, building upon research and engineering innovations across nearly every part of our foundation model development and infrastructure. This includes making Gemini 1.5 more efficient to train and serve, with a new Mixture-of-Experts (MoE) architecture.

The first Gemini 1.5 model we’re releasing for early testing is Gemini 1.5 Pro. It’s a mid-size multimodal model, optimized for scaling across a wide-range of tasks, and performs at a similar level to 1.0 Ultra , our largest model to date. It also introduces a breakthrough experimental feature in long-context understanding.

Gemini 1.5 Pro comes with a standard 128,000 token context window. But starting today, a limited group of developers and enterprise customers can try it with a context window of up to 1 million tokens via AI Studio and Vertex AI in private preview.

As we roll out the full 1 million token context window, we’re actively working on optimizations to improve latency, reduce computational requirements and enhance the user experience. We’re excited for people to try this breakthrough capability, and we share more details on future availability below.

These continued advances in our next-generation models will open up new possibilities for people, developers and enterprises to create, discover and build using AI.

Context lengths of leading foundation models

Highly efficient architecture

Gemini 1.5 is built upon our leading research on Transformer and MoE architecture. While a traditional Transformer functions as one large neural network, MoE models are divided into smaller "expert” neural networks.

Depending on the type of input given, MoE models learn to selectively activate only the most relevant expert pathways in its neural network. This specialization massively enhances the model’s efficiency. Google has been an early adopter and pioneer of the MoE technique for deep learning through research such as Sparsely-Gated MoE , GShard-Transformer , Switch-Transformer, M4 and more.

Our latest innovations in model architecture allow Gemini 1.5 to learn complex tasks more quickly and maintain quality, while being more efficient to train and serve. These efficiencies are helping our teams iterate, train and deliver more advanced versions of Gemini faster than ever before, and we’re working on further optimizations.

Greater context, more helpful capabilities

An AI model’s “context window” is made up of tokens, which are the building blocks used for processing information. Tokens can be entire parts or subsections of words, images, videos, audio or code. The bigger a model’s context window, the more information it can take in and process in a given prompt — making its output more consistent, relevant and useful.

Through a series of machine learning innovations, we’ve increased 1.5 Pro’s context window capacity far beyond the original 32,000 tokens for Gemini 1.0. We can now run up to 1 million tokens in production.

This means 1.5 Pro can process vast amounts of information in one go — including 1 hour of video, 11 hours of audio, codebases with over 30,000 lines of code or over 700,000 words. In our research, we’ve also successfully tested up to 10 million tokens.

Complex reasoning about vast amounts of information

1.5 Pro can seamlessly analyze, classify and summarize large amounts of content within a given prompt. For example, when given the 402-page transcripts from Apollo 11’s mission to the moon, it can reason about conversations, events and details found across the document.

Reasoning across a 402-page transcript: Gemini 1.5 Pro Demo

Gemini 1.5 Pro can understand, reason about and identify curious details in the 402-page transcripts from Apollo 11’s mission to the moon.

Better understanding and reasoning across modalities

1.5 Pro can perform highly-sophisticated understanding and reasoning tasks for different modalities, including video. For instance, when given a 44-minute silent Buster Keaton movie , the model can accurately analyze various plot points and events, and even reason about small details in the movie that could easily be missed.

Multimodal prompting with a 44-minute movie: Gemini 1.5 Pro Demo

Gemini 1.5 Pro can identify a scene in a 44-minute silent Buster Keaton movie when given a simple line drawing as reference material for a real-life object.

Relevant problem-solving with longer blocks of code

1.5 Pro can perform more relevant problem-solving tasks across longer blocks of code. When given a prompt with more than 100,000 lines of code, it can better reason across examples, suggest helpful modifications and give explanations about how different parts of the code works.

Problem solving across 100,633 lines of code | Gemini 1.5 Pro Demo

Gemini 1.5 Pro can reason across 100,000 lines of code giving helpful solutions, modifications and explanations.

Enhanced performance

When tested on a comprehensive panel of text, code, image, audio and video evaluations, 1.5 Pro outperforms 1.0 Pro on 87% of the benchmarks used for developing our large language models (LLMs). And when compared to 1.0 Ultra on the same benchmarks, it performs at a broadly similar level.

Gemini 1.5 Pro maintains high levels of performance even as its context window increases. In the Needle In A Haystack (NIAH) evaluation, where a small piece of text containing a particular fact or statement is purposely placed within a long block of text, 1.5 Pro found the embedded text 99% of the time, in blocks of data as long as 1 million tokens.

Gemini 1.5 Pro also shows impressive “in-context learning” skills, meaning that it can learn a new skill from information given in a long prompt, without needing additional fine-tuning. We tested this skill on the Machine Translation from One Book (MTOB) benchmark, which shows how well the model learns from information it’s never seen before. When given a grammar manual for Kalamang , a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person learning from the same content.

As 1.5 Pro’s long context window is the first of its kind among large-scale models, we’re continuously developing new evaluations and benchmarks for testing its novel capabilities.

For more details, see our Gemini 1.5 Pro technical report .

Extensive ethics and safety testing

In line with our AI Principles and robust safety policies, we’re ensuring our models undergo extensive ethics and safety tests. We then integrate these research learnings into our governance processes and model development and evaluations to continuously improve our AI systems.

Since introducing 1.0 Ultra in December, our teams have continued refining the model, making it safer for a wider release. We’ve also conducted novel research on safety risks and developed red-teaming techniques to test for a range of potential harms.

In advance of releasing 1.5 Pro, we've taken the same approach to responsible deployment as we did for our Gemini 1.0 models, conducting extensive evaluations across areas including content safety and representational harms, and will continue to expand this testing. Beyond this, we’re developing further tests that account for the novel long-context capabilities of 1.5 Pro.

Build and experiment with Gemini models

We’re committed to bringing each new generation of Gemini models to billions of people, developers and enterprises around the world responsibly.

Starting today, we’re offering a limited preview of 1.5 Pro to developers and enterprise customers via AI Studio and Vertex AI . Read more about this on our Google for Developers blog and Google Cloud blog .

We’ll introduce 1.5 Pro with a standard 128,000 token context window when the model is ready for a wider release. Coming soon, we plan to introduce pricing tiers that start at the standard 128,000 context window and scale up to 1 million tokens, as we improve the model.

Early testers can try the 1 million token context window at no cost during the testing period, though they should expect longer latency times with this experimental feature. Significant improvements in speed are also on the horizon.

Developers interested in testing 1.5 Pro can sign up now in AI Studio, while enterprise customers can reach out to their Vertex AI account team.

Learn more about Gemini’s capabilities and see how it works .

Get more stories from Google in your inbox.

Your information will be used in accordance with Google's privacy policy.

Done. Just one step more.

Check your inbox to confirm your subscription.

You are already subscribed to our newsletter.

You can also subscribe with a different email address .

Related stories

Gemini models are coming to performance max.

gemma-header

Gemma: Introducing new state-of-the-art open models

What is a long context window.

MSC_Keyword_Cover (3)

How AI can strengthen digital security

Shield

Working together to address AI risks and opportunities at MSC

AI Evergreen 1 (1)

How we’re partnering with the industry, governments and civil society to advance AI

Let’s stay in touch. Get the latest news from Google in your inbox.

  • Newsletters

OpenAI teases an amazing new generative video model called Sora

The firm is sharing Sora with a small group of safety testers but the rest of us will have to wait to learn more.

  • Will Douglas Heaven archive page

OpenAI has built a striking new generative video model called Sora that can take a short text description and turn it into a detailed, high-definition film clip up to a minute long.

Based on four sample videos that OpenAI shared with MIT Technology Review ahead of today’s announcement, the San Francisco–based firm has pushed the envelope of what’s possible with text-to-video generation (a hot new research direction that we flagged as a trend to watch in 2024 ).

“We think building models that can understand video, and understand all these very complex interactions of our world, is an important step for all future AI systems,” says Tim Brooks, a scientist at OpenAI.

But there’s a disclaimer. OpenAI gave us a preview of Sora (which means sky in Japanese) under conditions of strict secrecy. In an unusual move, the firm would only share information about Sora if we agreed to wait until after news of the model was made public to seek the opinions of outside experts. [Editor’s note: We’ve updated this story with outside comment below.] OpenAI has not yet released a technical report or demonstrated the model actually working. And it says it won’t be releasing Sora anytime soon. [ Update: OpenAI has now shared more technical details on its website.]

The first generative models that could produce video from snippets of text appeared in late 2022. But early examples from Meta , Google, and a startup called Runway were glitchy and grainy. Since then, the tech has been getting better fast. Runway’s gen-2 model, released last year, can produce short clips that come close to matching big-studio animation in their quality. But most of these examples are still only a few seconds long.  

The sample videos from OpenAI’s Sora are high-definition and full of detail. OpenAI also says it can generate videos up to a minute long. One video of a Tokyo street scene shows that Sora has learned how objects fit together in 3D: the camera swoops into the scene to follow a couple as they walk past a row of shops.

OpenAI also claims that Sora handles occlusion well. One problem with existing models is that they can fail to keep track of objects when they drop out of view. For example, if a truck passes in front of a street sign, the sign might not reappear afterward.  

In a video of a papercraft underwater scene, Sora has added what look like cuts between different pieces of footage, and the model has maintained a consistent style between them.

It’s not perfect. In the Tokyo video, cars to the left look smaller than the people walking beside them. They also pop in and out between the tree branches. “There’s definitely some work to be done in terms of long-term coherence,” says Brooks. “For example, if someone goes out of view for a long time, they won’t come back. The model kind of forgets that they were supposed to be there.”

Impressive as they are, the sample videos shown here were no doubt cherry-picked to show Sora at its best. Without more information, it is hard to know how representative they are of the model’s typical output.   

It may be some time before we find out. OpenAI’s announcement of Sora today is a tech tease, and the company says it has no current plans to release it to the public. Instead, OpenAI will today begin sharing the model with third-party safety testers for the first time.

In particular, the firm is worried about the potential misuses of fake but photorealistic video . “We’re being careful about deployment here and making sure we have all our bases covered before we put this in the hands of the general public,” says Aditya Ramesh, a scientist at OpenAI, who created the firm’s text-to-image model DALL-E .

But OpenAI is eyeing a product launch sometime in the future. As well as safety testers, the company is also sharing the model with a select group of video makers and artists to get feedback on how to make Sora as useful as possible to creative professionals. “The other goal is to show everyone what is on the horizon, to give a preview of what these models will be capable of,” says Ramesh.

To build Sora, the team adapted the tech behind DALL-E 3, the latest version of OpenAI’s flagship text-to-image model. Like most text-to-image models, DALL-E 3 uses what’s known as a diffusion model. These are trained to turn a fuzz of random pixels into a picture.

Sora takes this approach and applies it to videos rather than still images. But the researchers also added another technique to the mix. Unlike DALL-E or most other generative video models, Sora combines its diffusion model with a type of neural network called a transformer.

Transformers are great at processing long sequences of data, like words. That has made them the special sauce inside large language models like OpenAI’s GPT-4 and Google DeepMind’s Gemini . But videos are not made of words. Instead, the researchers had to find a way to cut videos into chunks that could be treated as if they were. The approach they came up with was to dice videos up across both space and time. “It’s like if you were to have a stack of all the video frames and you cut little cubes from it,” says Brooks.

The transformer inside Sora can then process these chunks of video data in much the same way that the transformer inside a large language model processes words in a block of text. The researchers say that this let them train Sora on many more types of video than other text-to-video models, varied in terms of resolution, duration, aspect ratio, and orientation. “It really helps the model,” says Brooks. “That is something that we’re not aware of any existing work on.”

“From a technical perspective it seems like a very significant leap forward,” says Sam Gregory, executive director at Witness, a human rights organization that specializes in the use and misuse of video technology. “But there are two sides to the coin,” he says. “The expressive capabilities offer the potential for many more people to be storytellers using video. And there are also real potential avenues for misuse.” 

OpenAI is well aware of the risks that come with a generative video model. We are already seeing the large-scale misuse of deepfake images . Photorealistic video takes this to another level.

Gregory notes that you could use technology like this to misinform people about conflict zones or protests. The range of styles is also interesting, he says. If you could generate shaky footage that looked like something shot with a phone, it would come across as more authentic.

The tech is not there yet, but generative video has gone from zero to Sora in just 18 months. “We’re going to be entering a universe where there will be fully synthetic content, human-generated content and a mix of the two,” says Gregory.

The OpenAI team plans to draw on the safety testing it did last year for DALL-E 3. Sora already includes a filter that runs on all prompts sent to the model that will block requests for violent, sexual, or hateful images, as well as images of known people. Another filter will look at frames of generated videos and block material that violates OpenAI’s safety policies.

OpenAI says it is also adapting a fake-image detector developed for DALL-E 3 to use with Sora. And the company will embed industry-standard C2PA tags , metadata that states how an image was generated, into all of Sora’s output. But these steps are far from foolproof. Fake-image detectors are hit-or-miss. Metadata is easy to remove, and most social media sites strip it from uploaded images by default.  

“We’ll definitely need to get more feedback and learn more about the types of risks that need to be addressed with video before it would make sense for us to release this,” says Ramesh.

Brooks agrees. “Part of the reason that we’re talking about this research now is so that we can start getting the input that we need to do the work necessary to figure out how it could be safely deployed,” he says.

Update 2/15: Comments from Sam Gregory were added .

Artificial intelligence

Ai for everything: 10 breakthrough technologies 2024.

Generative AI tools like ChatGPT reached mass adoption in record time, and reset the course of an entire industry.

What’s next for AI in 2024

Our writers look at the four hot trends to watch out for this year

  • Melissa Heikkilä archive page

Google’s Gemini is now in everything. Here’s how you can try it out.

Gmail, Docs, and more will now come with Gemini baked in. But Europeans will have to wait before they can download the app.

Deploying high-performance, energy-efficient AI

Investments into downsized infrastructure can help enterprises reap the benefits of AI while mitigating energy consumption, says corporate VP and GM of data center platform engineering and architecture at Intel, Zane Ball.

  • MIT Technology Review Insights archive page

Stay connected

Get the latest updates from mit technology review.

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at [email protected] with a list of newsletters you’d like to receive.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Prevent plagiarism. Run a free check.

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

What is your plagiarism score?

IMAGES

  1. FREE 5+ Sample Research Paper Templates in PDF

    paper research example

  2. A research paper. How to Start a Research Paper: Guide with Examples

    paper research example

  3. 🔥 Example of research paper in english. Research Paper Examples. 2022-10-17

    paper research example

  4. APA Research Paper Example Free Download

    paper research example

  5. How to Write a Research Paper ()

    paper research example

  6. 😀 Last page of a research paper. How to Write a Research Paper (with

    paper research example

VIDEO

  1. How Technology Has Affected Education?

  2. Research Paper Methodology

  3. Lecture No. 5, How to Write a Research Paper

  4. Writing A Research Paper: Discussion

  5. Secret To Writing A Research Paper

  6. How to Write Research Paper

COMMENTS

  1. 20+ Research Paper Example

    Here are some research paper examples in APA style: Research Paper Example APA 7th Edition Research Paper Example MLA MLA (Modern Language Association) style is frequently employed in humanities disciplines, including literature, languages, and cultural studies.

  2. Research Paper Example

    Harvard Letâ s look into each format in detail to understand the fundamental differences and similarities. Research Paper Example APA If your instructor asks you to provide a research paper in an APA format, go through the example given below and understand the basic structure. Make sure to follow the format throughout the paper.

  3. Sample papers

    The annotations draw attention to content and formatting and provide the relevant sections of the Publication Manual (7th ed.) to consult for more information. Student sample paper with annotations (PDF, 4.95MB) Professional sample paper with annotations (PDF, 3MB)

  4. Research Paper Examples

    Get 10% OFF with 24START discount code Browse Sample Research Papers Anthropology Research Paper Examples Anthropology Research Paper Archaeology Research Paper Forensic Anthropology Research Paper Linguistics Research Paper Medical Anthropology Research Paper Social Problems Research Paper Art Research Paper Examples Art Research Paper

  5. How to Write a Research Paper

    Table of contents Understand the assignment Choose a research paper topic Conduct preliminary research Develop a thesis statement Create a research paper outline Write a first draft of the research paper Write the introduction Write a compelling body of text Write the conclusion The second draft The revision process Research paper checklist

  6. Research Paper

    January 2, 2024 by Muhammad Hassan Table of Contents Research Paper Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue.

  7. Writing a Research Paper Introduction

    Step 1: Introduce your topic Step 2: Describe the background Step 3: Establish your research problem Step 4: Specify your objective (s) Step 5: Map out your paper Research paper introduction examples Frequently asked questions about the research paper introduction Step 1: Introduce your topic

  8. The Ultimate Guide to Writing a Research Paper

    1 Understand the assignment For some of you this goes without saying, but you might be surprised at how many students start a research paper without even reading the assignment guidelines. So your first step should be to review the assignment and carefully read the writing prompt.

  9. How to Create a Structured Research Paper Outline

    Research paper outline example. Research paper outlines can consist only of notes or be extremely detailed. Your teacher might provide guidance as to the kind of outline they wish to see; if not, choose what works best for you. Example: Measles and the vaccination debate

  10. APA Sample Paper

    APA Sample Paper Note: This page reflects the latest version of the APA Publication Manual (i.e., APA 7), which released in October 2019. The equivalent resource for the older APA 6 style can be found here. Media Files: APA Sample Student Paper , APA Sample Professional Paper Cite your source automatically in APA Cite

  11. Research Paper Example

    A study of infant feeding practices was carried out on a sample of 100 mother and infant pairs. The results revealed that only 20% of mothers in the study currently exclusively breastfeed their babies. It also shows that socio-economic factors like mother's work status, marital status and educational attainment had direct bearing on these ...

  12. Example of a Research Paper

    EXAMPLE OF A RESEARCH PAPER --- START OF EXAMPLE --- [Page 1 - text aligned in the center and middle of the page] "Behavioral Study of Obedience" by [author], [University] 1961 [Page 2 - text starts at the top, left] Abstract There are few facts about the role of obedience when committing acts against one's personal conscience (1961).

  13. PDF A Sample Research Paper/Thesis/Dissertation on Aspects of Elementary

    Theorem 1.2.1. A homogenous system of linear equations with more unknowns than equations always has infinitely many solutions. The definition of matrix multiplication requires that the number of columns of the first factor A be the same as the number of rows of the second factor B in order to form the product AB.

  14. Research Paper Outline

    Research paper outline is a plan or a structural framework that organizes the main ideas, arguments, and supporting evidence in a logical sequence. It serves as a blueprint or a roadmap for the writer to follow while drafting the actual research paper. Typically, an outline consists of the following elements:

  15. Research Paper Format

    January 5, 2024 by Muhammad Hassan Table of Contents Research paper format is an essential aspect of academic writing that plays a crucial role in the communication of research findings. The format of a research paper depends on various factors such as the discipline, style guide, and purpose of the research.

  16. How to Write a Research Paper Introduction (with Examples)

    Some research paper introduction examples are only half a page while others are a few pages long. In many cases, the introduction will be shorter than all of the other sections of your paper; its length depends on the size of your paper as a whole. Break through writer's block. Write your research paper introduction with Paperpal Copilot

  17. Research Paper Format

    Set 1 inch page margins. Apply double line spacing. If submitting for publication, insert a APA running head on every page. Indent every new paragraph ½ inch. Watch the video below for a quick guide to setting up the format in Google Docs. Title page The image below shows how to format an APA Style title page for a student paper. Running head

  18. PDF APA 7 Student Sample Paper

    In this sample paper, we've put four blank lines above the title. Commented [AF3]: Authors' names are written below the title, with one double-spaced blank line between them. Names should be written as follows: First name, middle initial(s), last name. Commented [AF4]: Authors' affiliations follow immediately after their names.

  19. 113 Great Research Paper Topics

    For example, if you're really interested in current events but your teacher wants you to write a research paper on a history topic, you may be able to choose a topic that fits both categories, like exploring the relationship between the US and North Korea.

  20. Research articles

    Comparison of tendon and muscle belly vibratory stimulation in the treatment of post-stroke upper extremity spasticity: a retrospective observational pilot study. Kenta Takeuchi. Takashi ...

  21. PDF Strategies for Essay Writing

    In a short paper—even a research paper—you don't need to provide an exhaustive summary as part of your conclusion. But you do need to make some kind of transition between your final body paragraph and your concluding paragraph. This may come in the form of a few sentences of summary. Or it may come in the form of a sentence that

  22. 'It depends': what 86 systematic reviews tell us about what strategies

    To identify potentially relevant peer-reviewed research papers, we developed a comprehensive systematic literature search strategy based on the terms used in the Grimshaw et al. ... For example, the review discussed involving opinion leaders and patient advocates through social media. However, this was a small review that included only five ...

  23. 10 Research Question Examples to Guide your Research Project

    10 Research Question Examples to Guide your Research Project Published on October 30, 2022 by Shona McCombes . Revised on October 19, 2023. The research question is one of the most important parts of your research paper, thesis or dissertation. It's important to spend some time assessing and refining your question before you get started.

  24. Research Guides: Assignment

    Example Oatmeal raisin cookies are the best cookie variety due to their healthy ingredients, sophisticated flavor profile, and the consistency with which they are produced. From that one sentence, you know my paper is about oatmeal raisin cookies, that I think they're the best, and that you're going to be reading about their ingredients ...

  25. Critical transitions in the Amazon forest system

    N.B. has received further funding from the Volkswagen foundation, the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 956170 ...

  26. Introducing Gemini 1.5, Google's next-generation AI model

    Gemini 1.5 delivers dramatically enhanced performance. It represents a step change in our approach, building upon research and engineering innovations across nearly every part of our foundation model development and infrastructure. This includes making Gemini 1.5 more efficient to train and serve, with a new Mixture-of-Experts (MoE) architecture.

  27. OpenAI teases an amazing new generative video model called Sora

    OpenAI has built a striking new generative video model called Sora that can take a short text description and turn it into a detailed, high-definition film clip up to a minute long.. Based on four ...

  28. How to Write a Research Proposal

    Research proposal examples Title page Introduction Literature review Research design and methods Contribution to knowledge Reference list Research schedule Budget Other interesting articles Frequently asked questions about research proposals Research proposal purpose

  29. OpenAI will now let you create videos from verbal cues

    Artificial intelligence leader OpenAI introduced a new AI model called Sora which it claims can create "realistic" and "imaginative" 60-second videos from quick text prompts.

  30. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question: