404 Not found

We use cookies on this site to enhance your experience

By clicking any link on this page you are giving your consent for us to set cookies.

A link to reset your password has been sent to your email.

Back to login

We need additional information from you. Please complete your profile first before placing your order.

Thank you. payment completed., you will receive an email from us to confirm your registration, please click the link in the email to activate your account., there was error during payment, orcid profile found in public registry, download history, novelty effect: how to ensure your research ideas are original and new.

  • Charlesworth Author Services
  • 12 January, 2022
What has been is what will be, and what has been done is what will be done, and there is nothing new under the sun. — Ecclesiastes

Novelty can be described as the quality of being new, original or unusual . Novelty in scientific publishing is crucial, because journal editors and peer reviewers greatly prize novel research over and above confirmatory papers or research with negative results . After all, why give precious and limited journal space to something previously reported when authors submit novel, unreported discoveries?

How do you know what constitutes as novel? How can you as an academic author enhance the novelty effect with your research submissions ? Below we explore ideas that will help you maximise the novelty effect in your submissions.

a. New discovery

This comprises research on and reports of completely new discoveries. These can be new chemical elements, planets or other astrological phenomena, new species of flora or fauna, previously undiagnosed diseases, viruses etc. These are things never seen or reported before. Often such new discoveries serve as a seedbed for multiple reports or even completely new avenues of research. Journals prize submissions on new discoveries and often tout them in media reports.

b. The exceptionally rare

Not quite as exciting as new discoveries are reports on things not new, but seen or encountered exceptionally rarely, or not for a long time. An example is the sighting of the rare pink handfish, recently spotted in Australia for the first time in decades. In biomedical publishing , rare case reports of a near-unique condition (such as the separation of conjoined twins) are occasionally published and make the nightly news.

c. New theories

Typically, these papers provide substantial data which supports the novel thesis. Reports of new theories must have rigorous logic and need to stand on clear and well-documented foundations. They can’t be simple flights of theoretical fancy. As with new discoveries, new theories can spawn whole new branches of scientific inquiry.

d. New or significantly improved diagnostic/laboratory techniques

Reports on novel techniques don’t usually receive coverage from the mass media, but can often garner huge numbers of references if the new technique is adopted by the scientific community. Publication-worthy techniques include those which are more efficient, less time-consuming or more reliable than currently existing techniques or diagnostic procedures. Anything that is truly new or improves significantly on an established technique is potentially worthy of publication. In medicine, new surgical techniques are very important, but here’s a tip : try to provide a large prospective case series with long-term follow-up instead of a just a single case report.

e. Existing data combined into new knowledge

There is a profound novelty effect when researchers combine existing data/knowledge into something new. Ideas from disparate, previously unrelated fields of research can lead to completely novel discoveries with untold potential applications. Translational or applied research (particularly in the biomedical sciences) has borne abundant fruit over the last many decades. Translational applications of chemistry and physics to medicine have seen enormous advances in the diagnosis and treatment of numerous diseases.

f. Incremental additions to the literature

Not all research or publications will report on truly novel discoveries; in fact, very few will. But that doesn’t necessarily diminish the novelty effect of your work. The vast majority of published research adds incrementally to what is already known, nudging scientific knowledge forward. The accumulation of incremental discovery leads, over time, to large gains in understanding and knowledge.

How to ensure and verify the novelty effect

Whether your research reports something completely new or furthers an existing field in a new way, you need to make sure the contribution is indeed new.

  • Do your homework : Pore through the literature (in as many languages as possible) to make sure your idea is indeed new, or significantly different enough to be considered new.
  • To the degree possible, provide the ‘idea genealogy’ for your concept : Reference the major sources of those who have come before you. Through references and by describing your thought processes, describe clearly how you came up with the new idea or combination of ideas.
  • Disclose your sources of inspiration and new application : Doing so constitutes academic honesty, gives credit to those upon whose shoulders your research rests and provides intellectual fertiliser for other scientists who may, in turn, be able to build upon your own ideas.

All the best for your (novel) submission!

Maximise your publication success with Charlesworth Author Services.

Charlesworth Author Services, a trusted brand supporting the world’s leading academic publishers, institutions and authors since 1928. 

To know more about our services, visit: Our Services

Share with your colleagues

Related articles.

how to write novelty of research paper

Continuous Learning 2: Methods to Keep up with the Latest Literature

Charlesworth Author Services 17/11/2021 00:00:00

how to write novelty of research paper

How to identify Gaps in research and determine your original research topic

Charlesworth Author Services 14/09/2021 00:00:00

how to write novelty of research paper

Tips for designing your Research Question

Charlesworth Author Services 01/08/2017 00:00:00

Related webinars

how to write novelty of research paper

Bitesize Webinar: How to write and structure your academic article for publication: Module 5: Conduct a Literature Review

Charlesworth Author Services 04/03/2021 00:00:00

how to write novelty of research paper

Bitesize Webinar: How to write and structure your academic article for publication: Module 8: Write a strong methods section

Charlesworth Author Services 05/03/2021 00:00:00

how to write novelty of research paper

Bitesize Webinar: How to write and structure your academic article for publication: Module 9:Write a strong results and discussion section

how to write novelty of research paper

Bitesize Webinar: How to write and structure your academic article for publication - Module 14: Increase your chances for publication

Charlesworth Author Services 20/04/2021 00:00:00

Writing the paper

how to write novelty of research paper

How to write an Introduction to an academic article

Charlesworth Author Services 17/08/2020 00:00:00

how to write novelty of research paper

Strategies for writing the Results section in a scientific paper

Charlesworth Author Services 27/10/2021 00:00:00

how to write novelty of research paper

Writing an effective Discussion section in a scientific paper

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • CAREER BRIEF
  • 08 May 2019

Toolkit: How to write a great paper

A clear format will ensure that your research paper is understood by your readers. Follow:

1. Context — your introduction

2. Content — your results

3. Conclusion — your discussion

Plan your paper carefully and decide where each point will sit within the framework before you begin writing.

how to write novelty of research paper

Collection: Careers toolkit

Straightforward writing

Scientific writing should always aim to be A, B and C: Accurate, Brief, and Clear. Never choose a long word when a short one will do. Use simple language to communicate your results. Always aim to distill your message down into the simplest sentence possible.

Choose a title

A carefully conceived title will communicate the single core message of your research paper. It should be D, E, F: Declarative, Engaging and Focused.

Conclusions

Add a sentence or two at the end of your concluding statement that sets out your plans for further research. What is next for you or others working in your field?

Find out more

See additional information .

doi: https://doi.org/10.1038/d41586-019-01362-9

Related Articles

How to get published in high impact journals

how to write novelty of research paper

So you’re writing a paper

Writing for a Nature journal

How to boost your research: take a sabbatical in policy

How to boost your research: take a sabbatical in policy

World View 21 FEB 24

Structural biology for researchers with low vision

Structural biology for researchers with low vision

Career Column 19 FEB 24

Just 5 women have won a top maths prize in the past 90 years

Just 5 women have won a top maths prize in the past 90 years

News 16 FEB 24

Pay rises for Serbia’s top 10% of research scientists

Correspondence 20 FEB 24

Recruitment of Global Talent at the Institute of Zoology, Chinese Academy of Sciences (IOZ, CAS)

The Institute of Zoology (IOZ), Chinese Academy of Sciences (CAS), is seeking global talents around the world.

Beijing, China

Institute of Zoology, Chinese Academy of Sciences (IOZ, CAS)

how to write novelty of research paper

Position Opening for Principal Investigator GIBH

Guangzhou, Guangdong, China

Guangzhou Institutes of Biomedicine and Health(GIBH), Chinese Academy of Sciences

how to write novelty of research paper

Faculty Positions in Multiscale Research Institute for Complex Systems, Fudan University

The Multiscale Research Institute for Complex Systems (MRICS) at Fudan University is located at the Zhangjiang Campus of Fudan University.

Shanghai, China

Fudan University

how to write novelty of research paper

Postdoctoral Associate- Single- Cell and Data Science

Houston, Texas (US)

Baylor College of Medicine (BCM)

how to write novelty of research paper

Postdoctoral Associate

how to write novelty of research paper

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List

Logo of elife

How should novelty be valued in science?

Barak a cohen.

1 Edison Family Center for Genome Sciences and Systems Biology and Department of Genetics, Washington University School of Medicine, Saint Louis, United States

Scientists are under increasing pressure to do "novel" research. Here I explore whether there are risks to overemphasizing novelty when deciding what constitutes good science. I review studies from the philosophy of science to help understand how important an explicit emphasis on novelty might be for scientific progress. I also review studies from the sociology of science to anticipate how emphasizing novelty might impact the structure and function of the scientific community. I conclude that placing too much value on novelty could have counterproductive effects on both the rate of progress in science and the organization of the scientific community. I finish by recommending that our current emphasis on novelty be replaced by a renewed emphasis on predictive power as a characteristic of good science.

DOI: http://dx.doi.org/10.7554/eLife.28699.001

Introduction

“(T)he primary novelty of this work is the ability to make a prediction about drug sensitivity. Reviewers felt that the predictive ability would be very hard to generalize, however, reducing the impact of this novel feature. This concern about novelty … was the driving factor in this decision.”

-excerpt from a rejection letter received by the author

A mere 48 years separates the discovery of the double-helix structure of DNA ( Watson and Crick, 1953 ) from the announcements that the human genome had been sequenced ( Lander et al., 2001 ; Venter et al., 2001 ). The pace and regularity with which important discoveries have been made in molecular biology is remarkable. Molecular biologists have had an uncanny knack of homing in on the small irregularities that lead to large breakthroughs. It was irregularly colored ears of corn that revealed the existence of mobile genetic elements known as transposons ( McClintock, 1950 ). Many of the most important regulators of human development first surfaced as mutations that slightly alter the rows of bristles on the undersides of fruit fly larvae ( Nüsslein-Volhard and Wieschaus, 1980 ). Scientists studying tiny roundworms that age in odd ways helped uncover micro RNAs ( Lee et al., 1993 ; Wightman et al., 1993 ), which are now thought to regulate a large fraction of human genes. Again and again molecular biologists have seized on these sorts of minutiae to gain enormous insight into the inner workings of cells. Looking back over the last 60 years one feels a great sense of pride in being part of a tradition that is undoubtedly one of the most productive in the history of science.

Given the winning formula molecular biologists appear to have hit on, it is interesting that there are large changes occurring in our community. As the size of the molecular biology community continues to grow, competition for limited funding has become much more intense. With the completion of the human genome has come immense pressure to “translate” basic research findings into new treatments for disease. In the United States our institutional leaders at the National Institutes of Health (NIH) openly worry about data showing that the rate of discovery in the biomedical sciences no longer reflects the size of their investments ( Cook et al., 2015 ; Fortin and Currie, 2013 ; Gallo et al., 2014 ; Lauer et al., 2015 ; Doyle et al., 2015 ). Undoubtedly these pressures influence the trajectories of research programs. What we do not know yet is how these pressures impact the overall productivity of our community.

One manifestation of these changes is an increasing emphasis on “novelty” in science. Our scientific establishment – through our funding agencies, review panels and editorial boards – are clearly putting a higher and higher premium on research that is deemed novel. Research programs that lack a “high degree” of novelty struggle for support and “incremental” findings are relegated to publication in second- and third-tier journals. NIH grant proposals now have an “Innovation” section where investigators must explicitly list the attributes of their research that make it novel. While funding agencies seek novelty in their grant portfolios, they are also increasingly looking for "feasibility" as resources become scarce, and this appears to put novel research programs at a disadvantage ( Alberts et al., 2014 ). As investigators struggle to walk a nearly impossible line between feasibility and novelty, the definition of novelty itself becomes blurred. Novelty can now mean anything from demonstrating a well-established phenomenon in a new system to testing a hypothesis with no precedent in the literature. Even though we cannot strictly define what is and is not novel, the message is still clear; novelty equates with good research.

Perhaps this emphasis on novelty is not really new at all, but only a codifying of something we already value implicitly. Even so, we should consider the effects that an explicit emphasis on novelty might have on the properties of scientific research that have made molecular biology so successful. These properties include our system of peer review, our scientific standards of proof and falsification, and the organization of the scientific community. Increasing the value we place on novelty will likely affect each of these factors.

Lessons from the philosophy of science

For working scientists Karl Popper is almost certainly the most influential philosopher of science. Most of us at least pay lip service to Popper’s philosophy when we recite the mantra that hypotheses can never be proved, only disproved. For many scientists the distinction between what is disprovable and what is not demarcates the line between what is and is not science, an idea taken directly from Popper’s writings. According to Popper, scientists propose new hypotheses about how the world works, and any hypotheses that are subsequently falsified by empirical observation are relegated to the scrap heap ( Popper, 1963 ). This framework of hypothesis generation and refutation is widely accepted by scientists.

What is less well appreciated is how utterly Popper rejected the notion of confirmation. Popper was adamant that the survival of a hypothesis in the face of empirical challenge says nothing about its validity, only that that the hypothesis has yet to be falsified. However, Popper’s strict adherence to this idea became difficult to defend and, to be practical, most scientists do allow that empirical evidence can either support or falsify a hypothesis.

What if anything can we infer about the value of novelty from Popper's ideas on hypotheses and falsification? Because Popper believed that hypotheses can never be proved, he stressed that hypotheses must be subjected to repeated testing, even after they have survived several empirical challenges. In this sense he valued follow-through over novelty. However, because Popper believed that “good tests kill flawed theories”, new tests must be more than trivial variations of previous experiments. The philosopher Imre Lakatos argued that good research programs are "progressive" ( Lakatos, 1970 ), and that scientists should constantly seek to expand their hypotheses into new areas of observation. Today, however, review panels are likely to tag progressive research programs as lacking in novelty because the scientists who pursue these programs seek to expand old hypotheses into new realms, rather than develop new hypotheses altogether. This is misguided. Scientists following progressive research programs require ingenuity and creativity to devise the tests that expand the reach of their hypotheses beyond the obvious. According to Popper the novelty of a new hypothesis is beside the point, unless and until the hypothesis it is meant to replace is falsified.

It appears then that nothing in the ideas of Popper or Kuhn particularly values novelty for its own sake.

Thomas Kuhn, a contemporary of Popper, was in many ways Popper’s opposite. Kuhn emphasized the importance of “paradigms”, coherent collections of claims, methodologies, and teaching practices that govern scientific inquiry. In his hugely influential book The Structure of Scientific Revolutions he explains that the purpose of a paradigm is to provide a guide for investigating the right questions ( Kuhn and Hacking, 2012 ). Here Kuhn’s philosophy sharply contrasts with Popper’s. While Popper advocated abandoning a theory the moment it was falsified, Kuhn emphasized that paradigms can tolerate a good deal of “anomalies” and still remain valid. The flexibility of paradigms allows scientists to continue working in a productive framework long after falsification would have dictated a change. If scientists had to drop their paradigms every time they encountered a problem then nothing would ever get done. Only a critical mass of anomalies requires a “paradigm shift”.

It appears then that nothing in the ideas of Popper or Kuhn particularly values novelty for its own sake. Both Popper and Kuhn emphasized the need for scientists to stick doggedly with their hypotheses, Popper because hypotheses must be challenged continually no matter how often they have been confirmed, and Kuhn because only a critical mass of anomalies can force a paradigm shift. Ironically, over time the effect of Kuhn's book has been to weaken scientists’ belief in their paradigms. Many investigators now actively search for paradigm shifts. This conflicts with Kuhn’s description of progress in which scientists cling tightly to their paradigms, giving them up only grudgingly after the weight of anomalous results renders the paradigm unsupportable. Despite their differences, novelty seeking is not a key component in the philosophies of either Popper or Kuhn.

Many scientists have a visceral reaction to philosophies that cast them as mechanically pursuing their hypotheses. Kuhn in particular was attacked for seeming to endorse a grinding and boring type of science, and he did not help his case by referring to work done in the context of a paradigm as “normal” science.

But we need not explicitly value novelty to keep science from being a dull grind. Peter Godfrey-Smith writes that Popper painted an appealing picture of scientists as “hard-headed cowboys, out on the range, with a Stradivarius tucked in their saddlebags” ( Godfrey-Smith, 2003 ). Hard-headed because they must have the determination to stick with their hypotheses, and packing a Stradivarius because they need inspiration when devising tests that expand their hypotheses into new realms. Kuhn too seemed in awe of the ability of normal science to hone in on “miniscule” findings that end up revealing deep truths about the world. Think of the little tails on the electron micrographs of the RNA:DNA hybrids that revealed the phenomenon of intron splicing ( Berget et al., 1977 ), or the examples given at the start of this article. While normal science might seem a derogatory term for what most investigators do, Kuhn saw it as requiring imagination.

Even still, as working scientists we know that much of day-to-day science involves painstaking and often repetitive work. Science succeeds because powerful social incentives help us push through the less glamorous aspects of research. Godfrey-Smith writes that the most significant reactions to the philosophies of both Popper and Kuhn emphasized the importance of social forces in science. For example, in his later writings Popper struggled with the question of exactly when an observation counts as a refutation. His solution was to shift from describing the proper methodologies of science to describing the proper social behavior of scientists. For Kuhn, paradigms highlighted the importance of the social aspects of science, including the indoctrination of students and the collective adherence to particular claims among investigators working under the same paradigm. In the next section I discuss how the increasing emphasis on novelty might influence the social structure of science.

Lessons from the sociology of science

An important question for sociologists of science – and also for scientists and funding agencies – is: What distribution of people across rival research programs is best for science? The immediate impact of emphasizing novelty might be to distribute researchers over the widest possible range of research programs, as each investigator seeks to maximize the novelty of their own research program. This might seem an efficient way of exploring the widest possible range of theories but such a distribution also raises problems. Kuhn wrote extensively of the necessity of having large groups of researchers organized around a particular set of theories. Placing too much emphasis on novelty may result in a distribution of effort that is too diffuse to enable efficient progress. But scientists consider an array of incentives besides novelty when choosing their research programs.

Robert Merton laid the foundations of the sociology of science with his discussion of reward systems in science ( Merton, 1957 ). Merton argued that recognition is the main form of reward in science. In particular the “priority rule”, which awards the most recognition to the first investigator to support a hypothesis, is an especially powerful incentive in science. To support his idea Merton showed that the history of science is chock full of disputes over priority (for example, Isaac Newton battled Gottfried Leibniz over priority for the invention of calculus ( Hall, 1980 )). One benefit of an incentive system that rewards priority is that it encourages original thought and novel lines of investigation. One might argue that this means that novelty seeking is already baked directly into the social fabric of science.

Hull viewed the success of science as a result of a delicate balance between competition and cooperation, creativity and skepticism, trust and doubt, and open-mindedness and dogmatism. Placing too much emphasis on novelty could upset this equilibrium in ways that are not optimal for scientific progress.

Some sociologists argue that the priority incentive coupled with the individual quest for credit is what produces good outcomes in the scientific community. These authors envision something like the “invisible hand” that guides free market capitalism in Adam Smith’s Wealth of Nations ( Smith, 2000 ). Scientists must balance risk versus reward when choosing between competing hypotheses to explore. The priority incentive prevents all investigators from working on the hypothesis with the highest probability of success. The argument is that credit is a pie of fixed size that can be shared either equally ( Kitcher, 1990 ) or unequally ( Strevens, 2003 ), but only by investigators who work on the winning hypothesis. When too many scientists work on the same hypothesis there is an incentive to work on novel hypotheses, even ones where the chance of success might be smaller, but where the share of credit would be larger ( Laudan, 1977 ). In this way the priority rule balances cooperation and competition between scientists, and divides individual effort between different research programs.

David Hull argued that science is particularly good at portioning effort in a way that maximizes good outcomes for the community ( Hull, 1988 ). Hull agreed with Merton that the priority rule helps to maintain a balance between cooperation and competition in science. However, he also recognized the importance of the rivalries between scientists that encourage investigators to check the validity of their competitors’ work, especially results they may want to use in their own research. This checking, along with the priority rule, helps to maintain a balance between creativity and skepticism, which Hull believed was an essential feature of science. Scientists can become overly attached to their ideas, and most are reluctant to kill their pet theories, especially theories with creative panache. To counterbalance this tendency science relies on the incentive rival scientists have to vigorously check work that may be useful to them, or results that challenge their own dogma.

Hull might have been wary about introducing an explicit incentive for novelty into the scientific community. For one thing, along with most other sociologists of science, he thought that the priority incentive already provided a powerful motivation for scientists to test novel theories. But more than others Hull viewed the success of science as a result of a delicate balance between competition and cooperation, creativity and skepticism, trust and doubt, and open-mindedness and dogmatism. Placing too much emphasis on novelty could upset this equilibrium in ways that are not optimal for scientific progress.

In particular, an explicit emphasis on novelty might perturb the balance between the incentive for scientists to check their rivals’ theories and the priority rule. The priority rule provides a powerful incentive for scientists to publish their work quickly. This is good for the community because new ideas get disseminated rapidly, where they can be incorporated into other research programs. However, there is an equally powerful incentive to be correct when publishing because scientists know that other investigators who want to build on their results are likely to uncover any mistakes that make it into print. If we value novelty too much then scientists will be incentivized to publish too quickly, without imposing the rigor they might normally demand of themselves. Progress would slow to a crawl as other scientists waste time trying to build on flawed results.

Indeed, some in the scientific establishment have already warned of a “crisis in reproducibility” ( Errington et al., 2014 ; Baker, 2016 ). Not surprisingly this crisis follows an explosion in papers reporting weak claims of novelty ( Henikoff and Levis, 1991 ; Friedman and Karlsson, 1997 ). Others have argued that the reward system in modern molecular biology incentivizes statistically underpowered research designs ( Higginson and Munafò, 2016 ). To counteract this trend some of the leaders in our field now advocate funding centralized efforts to validate published studies ( Collins and Tabak, 2014 ). This suggests that priority and checking have become unbalanced in the general scientific community. Those leaders advocating for centralized checking efforts might do well to ask themselves what role their emphasis on novelty has played in precipitating this so-called crisis.

Another consequence of emphasizing novelty might be to increase the tenacity with which scientists attack their rivals’ hypotheses. Novel results are particularly likely to be attacked, in part because scientists who can lay claim to novelty enjoy so many advantages over other scientists. Rival scientists are thus incentivized to use anomalous results to discredit novel hypotheses. This is unfortunate because as Kuhn emphasized, hypotheses must be allowed to tolerate some anomalous results before they are discarded, otherwise the community cannot exploit the utility of working models. Ironically, novel research programs have a very difficult time surviving when novelty is so highly coveted.

Perhaps our obsession with novelty is a sort of communal nostalgia for the good old days, when important foundational discoveries came fast and furious.

An emphasis on novelty could also break the cohesion between scientists working within research programs. Cooperation is essential to scientific progress, and this cooperation is balanced by competition from investigators who are willing to challenge rival theories. If scientists must maximize the novelty of their research then they are more likely to pursue avenues as different as possible from their colleagues. We risk producing a community in which no single paradigm has the critical mass of supporters required to function effectively. This is a serious problem because current paradigms, imperfect though they might be, often have great utility, even though they may eventually be revised or even discarded.

Conclusions

When an area of science experiences rapid advancement over a short interval of time it may be followed by a period in which novel discoveries are harder to come by. After Mendeleyev articulated the concept of the periodic table there was an exciting period in which novel elements were rapidly discovered. As time passed it became more and more difficult to isolate the remaining elements. Perhaps molecular biology is also in a lull after a period of virtually unprecedented achievement. Almost 50 years ago Gunther Stent argued that there were no new principles left to discover in molecular biology ( Stent, 1969 ). All that scientists could look forward to would be the tedious grind of filling in details. These sorts of pronouncements have a way of being undone by events. For example, Stent’s prediction came before the discovery of splicing, reverse transcription, and micro RNAs. Even so, it may well be true that most of the foundational principles of molecular biology have already been discovered. Perhaps our obsession with novelty is a sort of communal nostalgia for the good old days, when important foundational discoveries came fast and furious.

It might also be that our desire to reward novelty stems from the frustration that research in molecular biology is not “translating” into new practical applications as fast as some might wish. The endless overpromising of novel therapeutics from our institutional leaders only makes this matter worse. Why don’t discoveries in molecular biology translate more quickly into practical applications? Is it because we are missing large chunks of basic theory? Probably not, and those who go searching for novelty and paradigm shifts are likely to be disappointed.

Instead, we face a very different set of problems. While our models are generally quite good at explaining the basic mechanisms underlying molecular biology, it is also the case that most of our models lack a quantitative formulation. Even when we know the underlying molecular mechanisms at work in a given system or process, in most cases we lack the ability to make quantitative predictions about the effects that specific perturbations will have on that system or process. We have a mountain of facts about how transcription initiates and beautiful cartoon models of this process, but we cannot predict the effects that genetic variants will have on transcription rates, whether these variants reside in cis -acting DNA sequences or in trans -acting protein factors. We know the identities of virtually all the proteins involved in apoptosis, and which of their post-translational modifications are pro- or anti-apoptotic. Yet we cannot use quantitative measures of the levels of these proteins in any cell type to make an accurate prediction of whether that cell will die or not. We understand the principles that drive peptide sequences to fold into secondary and tertiary structures, yet we cannot predict the shape any given amino acid sequence will adopt. Seen through the lens of predictive power, it is clear that the vast majority of models in molecular biology are inadequate for solving real world problems.

If we want to solve important practical problems then progressive research programs that expand and refine the predictive power of existing models are at least as important as research programs focused on novel hypotheses. One suggestion would be to replace the current emphasis on novelty with an emphasis on predictive power, particularly quantitative predictions. Research that results in models that reliably and quantitatively predict the outcomes of genetic, biochemical, or pharmacological perturbations should be valued highly, and rewarded, regardless of whether such models invoke novel phenomena.

The increasing emphasis placed on novelty brings significant dangers. As it becomes more and more important for scientists to be “the first to demonstrate” some claim, the influence of the priority rule will increase and more scientists will feel pressure to sacrifice rigor for speed of publication. We are also likely to see an increase in distasteful disputes over priority. The cohesion between competing groups may also be in jeopardy as the drive for novelty distorts the balance between competition and cooperation that has characterized the success of molecular biology over the past several decades.

Science as we practice it today is a relatively recent development. Our system of peer review, the priority rule, and the organization of scientists into cooperative social demes that compete against other groups of scientists all trace their origin to decisions made by the Royal Society in the late 1600s. For most of history humans acquired knowledge outside of what we would recognize as a scientific framework. It would be unwise to assume that science is a permanent feature of our society or that it can withstand deep structural changes and remain an efficient engine of discovery. The explicit value we now place on novelty in molecular biology is a change we should approach with caution if we are to safeguard the essential features of science that have made our field so successful.

Acknowledgements

I thank Rob Mitra, Mark Johnston, Siqi Zhao, Max Staller, Michael White, Zach Pincus, and Dana King for critical readings of the manuscripts and engaging discussions.

Competing interests

The author declares that no competing interests exist.

Author contributions

BAC, Conceptualization, Writing—original draft, Writing—review and editing.

  • Alberts B, Kirschner MW, Tilghman S, Varmus H. Rescuing US biomedical research from its systemic flaws. PNAS. 2014; 111 :5773–5777. doi: 10.1073/pnas.1404402111. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Baker M. Is there a reproducibility crisis? Nature. 2016; 533 :452–454. doi: 10.1038/533452a. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Berget SM, Moore C, Sharp PA. Spliced segments at the 5' terminus of adenovirus 2 late mRNA. PNAS. 1977; 74 :3171–3175. doi: 10.1073/pnas.74.8.3171. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Collins FS, Tabak LA. NIH plans to enhance reproducibility. Nature. 2014; 505 :612–613. doi: 10.1038/505612a. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cook I, Grange S, Eyre-Walker A. Research groups: How big should they be? PeerJ. 2015; 3 :e989. doi: 10.7717/peerj.989. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Doyle JM, Quinn K, Bodenstein YA, Wu CO, Danthi N, Lauer MS. Association of percentile ranking with citation impact and productivity in a large cohort of de novo NIMH-funded R01 grants. Molecular Psychiatry. 2015; 20 :1030–1036. doi: 10.1038/mp.2015.71. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Errington TM, Iorns E, Gunn W, Tan FE, Lomax J, Nosek BA. An open investigation of the reproducibility of cancer biology research. eLife. 2014; 3 :e04333. doi: 10.7554/eLife.04333. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Fortin JM, Currie DJ. Big science vs. little science: How scientific impact scales with funding. PLoS One. 2013; 8 :e65263. doi: 10.1371/journal.pone.0065263. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Friedman SH, Karlsson JO. A novel paradigm. Nature. 1997; 385 :480. doi: 10.1038/385480b0. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Gallo SA, Carpenter AS, Irwin D, McPartland CD, Travis J, Reynders S, Thompson LA, Glisson SR. The validation of peer review through research impact measures and the implications for funding strategies. PLoS One. 2014; 9 :e106474. doi: 10.1371/journal.pone.0106474. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Godfrey-Smith P. Theory and Reality. Chicago: University of Chicago Press; 2003. [ CrossRef ] [ Google Scholar ]
  • Hall AR. Philosophers at War: The Quarrel Between Leibniz and Newton. Cambridge: Cambridge University Press; 1980. [ CrossRef ] [ Google Scholar ]
  • Henikoff S, Levis R. So what's new? Nature. 1991; 350 :9. doi: 10.1038/350009b0. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Higginson AD, Munafò MR. Current incentives for scientists lead to underpowered studies with erroneous conclusions. PLOS Biology. 2016; 14 :e2000995. doi: 10.1371/journal.pbio.2000995. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hull DL. Science as a Process. Chicago: University of Chicago Press; 1988. [ CrossRef ] [ Google Scholar ]
  • Kitcher P. The division of cognitive labor. The Journal of Philosophy. 1990; 87 :5–22. doi: 10.2307/2026796. [ CrossRef ] [ Google Scholar ]
  • Kuhn TS, Hacking I. The Structure of Scientific Revolutions. Chicago: University of Chicago Press; 2012. [ CrossRef ] [ Google Scholar ]
  • Lakatos I. Falsification and the methodology of scientific research programmes. In: Lakatos I, Musgrave A, editors. Criticism and the Growth of Knowledge. Cambridge: Cambridge University Press; 1970. [ CrossRef ] [ Google Scholar ]
  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J, International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome. Nature. 2001; 409 :860–921. doi: 10.1038/35057062. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Laudan L. Progress and Its Problems: Toward a Theory of Scientific Growth. Berkeley: University of California Press; 1977. [ Google Scholar ]
  • Lauer MS, Danthi NS, Kaltman J, Wu C. Predicting productivity returns on investment: Thirty years of peer review, grant funding, and publication of highly cited papers at the National Heart, Lung, and Blood Institute. Circulation Research. 2015; 117 :239–243. doi: 10.1161/CIRCRESAHA.115.306830. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75 :843–854. doi: 10.1016/0092-8674(93)90529-Y. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • McClintock B. The origin and behavior of mutable loci in maize. PNAS. 1950; 36 :344–355. doi: 10.1073/pnas.36.6.344. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Merton RK. Priorities in scientific discovery. In: Storer N, editor. The Sociology of Science: Theoretical and Empirical Investigations. Chicago: University of Chicago Press; 1957. [ Google Scholar ]
  • Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila . Nature. 1980; 287 :795–801. doi: 10.1038/287795a0. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Popper KR. Conjectures and Refutations: The Growth of Scientific Knowledge. London and New York: Routledge & Kegan Paul; 1963. [ Google Scholar ]
  • Smith A. The Wealth of Nations. New York: Modern Library; 2000. [ Google Scholar ]
  • Stent GS. The Coming of the Golden Age: A View of the End of Progress. New York: The Natural History Press; 1969. [ Google Scholar ]
  • Strevens M. The role of the priority rule in Science. The Journal of Philosophy. 2003; 100 :55–79. doi: 10.5840/jphil2003100224. [ CrossRef ] [ Google Scholar ]
  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigó R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X. The sequence of the human genome. Science. 2001; 291 :1304–1351. doi: 10.1126/science.1058040. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Watson JD, Crick FH. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature. 1953; 171 :737–738. doi: 10.1038/171737a0. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans . Cell. 1993; 75 :855–862. doi: 10.1016/0092-8674(93)90530-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • eLife. 2017; 6: e28699.

Decision letter

In the interests of transparency, eLife includes the editorial decision letter and accompanying author responses. A lightly edited version of the letter sent to the authors after peer review is shown, indicating the most substantive concerns; minor comments are not usually included.

Thank you for submitting your manuscript "How should novelty be valued in science?" to eLife for consideration as a Feature Article. Your manuscript has been reviewed by two peer reviewers and the eLife Features Editor (Peter Rodgers). The following individuals involved in review of your submission have agreed to reveal their identity: Yitzhak Pilpel (Reviewer #1) and Angela H DePace (Reviewer #2).

The reviewers have discussed the reviews with one another and the Features Editor has drafted this decision to help you prepare a revised submission. Most of the major revisions requested are optional (we feel the article would be improved if you addressed them, but it is not essential that you do).

The paper is an impressive scholarly work. It is broad, deep and methodological. It is very well written (though perhaps could be shortened). It studies the value of novelty in science through several angles, including philosophy of science (the excellent survey and comparison of Popper's vs. Kuhn's teachings as well as other less well-known thinkers is used here very effectively to deliver the notion that both falsification as well as paradigm establishment and shifting require more than purely "novelty-science"); it considers very effectively social and cultural aspects of science (the role of fame and recognition in the process, competition etc.); it touches upon the emotional aspects of doing science, and it very effectively also touches upon science organization and policy aspects such as in funding and granting of research projects (where the call for funding, not only individualistic research is refreshing and, in a way novel, in the current atmosphere).

Major revisions:

1) The solution presented at the end (to focus on quantitative prediction as a gauge of novelty) is only one of many possible solutions, and it would be good if the author could discuss other possible solutions, although we should not insist on this.

I would argue that another solution would be including some description of the sociology of science in graduate and undergraduate education, such that the value of novelty and reproducibility/extension at the community level are more clear to people. Right now we almost exclusively lift up isolated geniuses as scientific heroes; is it no wonder that everyone chases some paradigm shift of their own? I'm sure there are other solutions as well.

2) A common complaint I hear is that the competitive nature of modern science means that authors often over-sell their findings in papers in order make them seem more novel than they really are. Again, it would be good if the author could briefly discuss this phenomenon.

3) In addition to the relationship between novelty and philosophical and sociological factors it would be good to discuss how competition for funding and jobs seems to be reducing novelty – as outlined, for example, in the following passage from Alberts et al. 2014. Rescuing US Biomedical Research from its Systemic Flaws. PNAS 111:5773-5777:

"Competition in pursuit of experimental objectives has always been a part of the scientific enterprise, and it can have positive effects. However, hypercompetition for the resources and positions that are required to conduct science suppresses the creativity, cooperation, risk-taking, and original thinking required to make fundamental discoveries.

Now that the percentage of NIH grant applications that can be funded has fallen from around 30% into the low teens, biomedical scientists are spending far too much of their time writing and revising grant applications and far too little thinking about science and conducting experiments. The low success rates have induced conservative, short-term thinking in applicants, reviewers, and funders. The system now favors those who can guarantee results rather than those with potentially path-breaking ideas that, by definition, cannot promise success. Young investigators are discouraged from departing too far from their postdoctoral work, when they should instead be posing new questions and inventing new approaches. Seasoned investigators are inclined to stick to their tried-and-true formulas for success rather than explore new fields.

One manifestation of this shift to short-term thinking is the inflated value that is now accorded to studies that claim a close link to medical practice […]".

It would be good to discuss these matters (in just a paragraph or two) in part 1 or part 4 of the article, but this is not essential.

4) I would consider swapping the order of sections 2 and 3. Section 3 is the stronger of the two, in my opinion, and describes one ideal version of how the scientific community functions that many of us are familiar with, at least in the abstract. It thus may serve as more of a common starting point. (Although it may be worth noting that some aspects of this ideal might not serve us well either. For example it is highly individualistic and competitive in its framing; the same goals of novelty seeking and cross-checking might be achieved by other more collaborative social structures). The segue to section 2 can then be that novelty-seeking is a requirement of the social structure described in the previous section, as is independently validating or extending results in new areas. Both of these activities can be accommodated in the philosophical frameworks presented, but there is a clear second-tier status assigned to validating or extending results in some of them. Thus the dominant influence of Kuhn's work can be seen to be somewhat destructive in the overall goals of science. (Everyone constantly seeking poorly-defined paradigm shifts isn't necessarily productive).

Author response

As directed in the decision letter I have addressed some, but not all, of the major points as the letter indicated that addressing these points was optional.

This point is addressed in the ninth paragraph of the section “Lessons from the sociology of science”. I cite to papers documenting the exponential rise in claims to novelty.

I now address this point in the Introduction (fourth paragraph) and cite the Alberts et al. (2014) paper.

Page Content

Overview of the review report format, the first read-through, first read considerations, spotting potential major flaws, concluding the first reading, rejection after the first reading, before starting the second read-through, doing the second read-through, the second read-through: section by section guidance, how to structure your report, on presentation and style, criticisms & confidential comments to editors, the recommendation, when recommending rejection, additional resources, step by step guide to reviewing a manuscript.

When you receive an invitation to peer review, you should be sent a copy of the paper's abstract to help you decide whether you wish to do the review. Try to respond to invitations promptly - it will prevent delays. It is also important at this stage to declare any potential Conflict of Interest.

The structure of the review report varies between journals. Some follow an informal structure, while others have a more formal approach.

" Number your comments!!! " (Jonathon Halbesleben, former Editor of Journal of Occupational and Organizational Psychology)

Informal Structure

Many journals don't provide criteria for reviews beyond asking for your 'analysis of merits'. In this case, you may wish to familiarize yourself with examples of other reviews done for the journal, which the editor should be able to provide or, as you gain experience, rely on your own evolving style.

Formal Structure

Other journals require a more formal approach. Sometimes they will ask you to address specific questions in your review via a questionnaire. Or they might want you to rate the manuscript on various attributes using a scorecard. Often you can't see these until you log in to submit your review. So when you agree to the work, it's worth checking for any journal-specific guidelines and requirements. If there are formal guidelines, let them direct the structure of your review.

In Both Cases

Whether specifically required by the reporting format or not, you should expect to compile comments to authors and possibly confidential ones to editors only.

Reviewing with Empathy

Following the invitation to review, when you'll have received the article abstract, you should already understand the aims, key data and conclusions of the manuscript. If you don't, make a note now that you need to feedback on how to improve those sections.

The first read-through is a skim-read. It will help you form an initial impression of the paper and get a sense of whether your eventual recommendation will be to accept or reject the paper.

Keep a pen and paper handy when skim-reading.

Try to bear in mind the following questions - they'll help you form your overall impression:

  • What is the main question addressed by the research? Is it relevant and interesting?
  • How original is the topic? What does it add to the subject area compared with other published material?
  • Is the paper well written? Is the text clear and easy to read?
  • Are the conclusions consistent with the evidence and arguments presented? Do they address the main question posed?
  • If the author is disagreeing significantly with the current academic consensus, do they have a substantial case? If not, what would be required to make their case credible?
  • If the paper includes tables or figures, what do they add to the paper? Do they aid understanding or are they superfluous?

While you should read the whole paper, making the right choice of what to read first can save time by flagging major problems early on.

Editors say, " Specific recommendations for remedying flaws are VERY welcome ."

Examples of possibly major flaws include:

  • Drawing a conclusion that is contradicted by the author's own statistical or qualitative evidence
  • The use of a discredited method
  • Ignoring a process that is known to have a strong influence on the area under study

If experimental design features prominently in the paper, first check that the methodology is sound - if not, this is likely to be a major flaw.

You might examine:

  • The sampling in analytical papers
  • The sufficient use of control experiments
  • The precision of process data
  • The regularity of sampling in time-dependent studies
  • The validity of questions, the use of a detailed methodology and the data analysis being done systematically (in qualitative research)
  • That qualitative research extends beyond the author's opinions, with sufficient descriptive elements and appropriate quotes from interviews or focus groups

Major Flaws in Information

If methodology is less of an issue, it's often a good idea to look at the data tables, figures or images first. Especially in science research, it's all about the information gathered. If there are critical flaws in this, it's very likely the manuscript will need to be rejected. Such issues include:

  • Insufficient data
  • Unclear data tables
  • Contradictory data that either are not self-consistent or disagree with the conclusions
  • Confirmatory data that adds little, if anything, to current understanding - unless strong arguments for such repetition are made

If you find a major problem, note your reasoning and clear supporting evidence (including citations).

After the initial read and using your notes, including those of any major flaws you found, draft the first two paragraphs of your review - the first summarizing the research question addressed and the second the contribution of the work. If the journal has a prescribed reporting format, this draft will still help you compose your thoughts.

The First Paragraph

This should state the main question addressed by the research and summarize the goals, approaches, and conclusions of the paper. It should:

  • Help the editor properly contextualize the research and add weight to your judgement
  • Show the author what key messages are conveyed to the reader, so they can be sure they are achieving what they set out to do
  • Focus on successful aspects of the paper so the author gets a sense of what they've done well

The Second Paragraph

This should provide a conceptual overview of the contribution of the research. So consider:

  • Is the paper's premise interesting and important?
  • Are the methods used appropriate?
  • Do the data support the conclusions?

After drafting these two paragraphs, you should be in a position to decide whether this manuscript is seriously flawed and should be rejected (see the next section). Or whether it is publishable in principle and merits a detailed, careful read through.

Even if you are coming to the opinion that an article has serious flaws, make sure you read the whole paper. This is very important because you may find some really positive aspects that can be communicated to the author. This could help them with future submissions.

A full read-through will also make sure that any initial concerns are indeed correct and fair. After all, you need the context of the whole paper before deciding to reject. If you still intend to recommend rejection, see the section "When recommending rejection."

Once the paper has passed your first read and you've decided the article is publishable in principle, one purpose of the second, detailed read-through is to help prepare the manuscript for publication. You may still decide to recommend rejection following a second reading.

" Offer clear suggestions for how the authors can address the concerns raised. In other words, if you're going to raise a problem, provide a solution ." (Jonathon Halbesleben, Editor of Journal of Occupational and Organizational Psychology)

Preparation

To save time and simplify the review:

  • Don't rely solely upon inserting comments on the manuscript document - make separate notes
  • Try to group similar concerns or praise together
  • If using a review program to note directly onto the manuscript, still try grouping the concerns and praise in separate notes - it helps later
  • Note line numbers of text upon which your notes are based - this helps you find items again and also aids those reading your review

Now that you have completed your preparations, you're ready to spend an hour or so reading carefully through the manuscript.

As you're reading through the manuscript for a second time, you'll need to keep in mind the argument's construction, the clarity of the language and content.

With regard to the argument’s construction, you should identify:

  • Any places where the meaning is unclear or ambiguous
  • Any factual errors
  • Any invalid arguments

You may also wish to consider:

  • Does the title properly reflect the subject of the paper?
  • Does the abstract provide an accessible summary of the paper?
  • Do the keywords accurately reflect the content?
  • Is the paper an appropriate length?
  • Are the key messages short, accurate and clear?

Not every submission is well written. Part of your role is to make sure that the text’s meaning is clear.

Editors say, " If a manuscript has many English language and editing issues, please do not try and fix it. If it is too bad, note that in your review and it should be up to the authors to have the manuscript edited ."

If the article is difficult to understand, you should have rejected it already. However, if the language is poor but you understand the core message, see if you can suggest improvements to fix the problem:

  • Are there certain aspects that could be communicated better, such as parts of the discussion?
  • Should the authors consider resubmitting to the same journal after language improvements?
  • Would you consider looking at the paper again once these issues are dealt with?

On Grammar and Punctuation

Your primary role is judging the research content. Don't spend time polishing grammar or spelling. Editors will make sure that the text is at a high standard before publication. However, if you spot grammatical errors that affect clarity of meaning, then it's important to highlight these. Expect to suggest such amendments - it's rare for a manuscript to pass review with no corrections.

A 2010 study of nursing journals found that 79% of recommendations by reviewers were influenced by grammar and writing style (Shattel, et al., 2010).

1. The Introduction

A well-written introduction:

  • Sets out the argument
  • Summarizes recent research related to the topic
  • Highlights gaps in current understanding or conflicts in current knowledge
  • Establishes the originality of the research aims by demonstrating the need for investigations in the topic area
  • Gives a clear idea of the target readership, why the research was carried out and the novelty and topicality of the manuscript

Originality and Topicality

Originality and topicality can only be established in the light of recent authoritative research. For example, it's impossible to argue that there is a conflict in current understanding by referencing articles that are 10 years old.

Authors may make the case that a topic hasn't been investigated in several years and that new research is required. This point is only valid if researchers can point to recent developments in data gathering techniques or to research in indirectly related fields that suggest the topic needs revisiting. Clearly, authors can only do this by referencing recent literature. Obviously, where older research is seminal or where aspects of the methodology rely upon it, then it is perfectly appropriate for authors to cite some older papers.

Editors say, "Is the report providing new information; is it novel or just confirmatory of well-known outcomes ?"

It's common for the introduction to end by stating the research aims. By this point you should already have a good impression of them - if the explicit aims come as a surprise, then the introduction needs improvement.

2. Materials and Methods

Academic research should be replicable, repeatable and robust - and follow best practice.

Replicable Research

This makes sufficient use of:

  • Control experiments
  • Repeated analyses
  • Repeated experiments

These are used to make sure observed trends are not due to chance and that the same experiment could be repeated by other researchers - and result in the same outcome. Statistical analyses will not be sound if methods are not replicable. Where research is not replicable, the paper should be recommended for rejection.

Repeatable Methods

These give enough detail so that other researchers are able to carry out the same research. For example, equipment used or sampling methods should all be described in detail so that others could follow the same steps. Where methods are not detailed enough, it's usual to ask for the methods section to be revised.

Robust Research

This has enough data points to make sure the data are reliable. If there are insufficient data, it might be appropriate to recommend revision. You should also consider whether there is any in-built bias not nullified by the control experiments.

Best Practice

During these checks you should keep in mind best practice:

  • Standard guidelines were followed (e.g. the CONSORT Statement for reporting randomized trials)
  • The health and safety of all participants in the study was not compromised
  • Ethical standards were maintained

If the research fails to reach relevant best practice standards, it's usual to recommend rejection. What's more, you don't then need to read any further.

3. Results and Discussion

This section should tell a coherent story - What happened? What was discovered or confirmed?

Certain patterns of good reporting need to be followed by the author:

  • They should start by describing in simple terms what the data show
  • They should make reference to statistical analyses, such as significance or goodness of fit
  • Once described, they should evaluate the trends observed and explain the significance of the results to wider understanding. This can only be done by referencing published research
  • The outcome should be a critical analysis of the data collected

Discussion should always, at some point, gather all the information together into a single whole. Authors should describe and discuss the overall story formed. If there are gaps or inconsistencies in the story, they should address these and suggest ways future research might confirm the findings or take the research forward.

4. Conclusions

This section is usually no more than a few paragraphs and may be presented as part of the results and discussion, or in a separate section. The conclusions should reflect upon the aims - whether they were achieved or not - and, just like the aims, should not be surprising. If the conclusions are not evidence-based, it's appropriate to ask for them to be re-written.

5. Information Gathered: Images, Graphs and Data Tables

If you find yourself looking at a piece of information from which you cannot discern a story, then you should ask for improvements in presentation. This could be an issue with titles, labels, statistical notation or image quality.

Where information is clear, you should check that:

  • The results seem plausible, in case there is an error in data gathering
  • The trends you can see support the paper's discussion and conclusions
  • There are sufficient data. For example, in studies carried out over time are there sufficient data points to support the trends described by the author?

You should also check whether images have been edited or manipulated to emphasize the story they tell. This may be appropriate but only if authors report on how the image has been edited (e.g. by highlighting certain parts of an image). Where you feel that an image has been edited or manipulated without explanation, you should highlight this in a confidential comment to the editor in your report.

6. List of References

You will need to check referencing for accuracy, adequacy and balance.

Where a cited article is central to the author's argument, you should check the accuracy and format of the reference - and bear in mind different subject areas may use citations differently. Otherwise, it's the editor’s role to exhaustively check the reference section for accuracy and format.

You should consider if the referencing is adequate:

  • Are important parts of the argument poorly supported?
  • Are there published studies that show similar or dissimilar trends that should be discussed?
  • If a manuscript only uses half the citations typical in its field, this may be an indicator that referencing should be improved - but don't be guided solely by quantity
  • References should be relevant, recent and readily retrievable

Check for a well-balanced list of references that is:

  • Helpful to the reader
  • Fair to competing authors
  • Not over-reliant on self-citation
  • Gives due recognition to the initial discoveries and related work that led to the work under assessment

You should be able to evaluate whether the article meets the criteria for balanced referencing without looking up every reference.

7. Plagiarism

By now you will have a deep understanding of the paper's content - and you may have some concerns about plagiarism.

Identified Concern

If you find - or already knew of - a very similar paper, this may be because the author overlooked it in their own literature search. Or it may be because it is very recent or published in a journal slightly outside their usual field.

You may feel you can advise the author how to emphasize the novel aspects of their own study, so as to better differentiate it from similar research. If so, you may ask the author to discuss their aims and results, or modify their conclusions, in light of the similar article. Of course, the research similarities may be so great that they render the work unoriginal and you have no choice but to recommend rejection.

"It's very helpful when a reviewer can point out recent similar publications on the same topic by other groups, or that the authors have already published some data elsewhere ." (Editor feedback)

Suspected Concern

If you suspect plagiarism, including self-plagiarism, but cannot recall or locate exactly what is being plagiarized, notify the editor of your suspicion and ask for guidance.

Most editors have access to software that can check for plagiarism.

Editors are not out to police every paper, but when plagiarism is discovered during peer review it can be properly addressed ahead of publication. If plagiarism is discovered only after publication, the consequences are worse for both authors and readers, because a retraction may be necessary.

For detailed guidelines see COPE's Ethical guidelines for reviewers and Wiley's Best Practice Guidelines on Publishing Ethics .

8. Search Engine Optimization (SEO)

After the detailed read-through, you will be in a position to advise whether the title, abstract and key words are optimized for search purposes. In order to be effective, good SEO terms will reflect the aims of the research.

A clear title and abstract will improve the paper's search engine rankings and will influence whether the user finds and then decides to navigate to the main article. The title should contain the relevant SEO terms early on. This has a major effect on the impact of a paper, since it helps it appear in search results. A poor abstract can then lose the reader's interest and undo the benefit of an effective title - whilst the paper's abstract may appear in search results, the potential reader may go no further.

So ask yourself, while the abstract may have seemed adequate during earlier checks, does it:

  • Do justice to the manuscript in this context?
  • Highlight important findings sufficiently?
  • Present the most interesting data?

Editors say, " Does the Abstract highlight the important findings of the study ?"

If there is a formal report format, remember to follow it. This will often comprise a range of questions followed by comment sections. Try to answer all the questions. They are there because the editor felt that they are important. If you're following an informal report format you could structure your report in three sections: summary, major issues, minor issues.

  • Give positive feedback first. Authors are more likely to read your review if you do so. But don't overdo it if you will be recommending rejection
  • Briefly summarize what the paper is about and what the findings are
  • Try to put the findings of the paper into the context of the existing literature and current knowledge
  • Indicate the significance of the work and if it is novel or mainly confirmatory
  • Indicate the work's strengths, its quality and completeness
  • State any major flaws or weaknesses and note any special considerations. For example, if previously held theories are being overlooked

Major Issues

  • Are there any major flaws? State what they are and what the severity of their impact is on the paper
  • Has similar work already been published without the authors acknowledging this?
  • Are the authors presenting findings that challenge current thinking? Is the evidence they present strong enough to prove their case? Have they cited all the relevant work that would contradict their thinking and addressed it appropriately?
  • If major revisions are required, try to indicate clearly what they are
  • Are there any major presentational problems? Are figures & tables, language and manuscript structure all clear enough for you to accurately assess the work?
  • Are there any ethical issues? If you are unsure it may be better to disclose these in the confidential comments section

Minor Issues

  • Are there places where meaning is ambiguous? How can this be corrected?
  • Are the correct references cited? If not, which should be cited instead/also? Are citations excessive, limited, or biased?
  • Are there any factual, numerical or unit errors? If so, what are they?
  • Are all tables and figures appropriate, sufficient, and correctly labelled? If not, say which are not

Your review should ultimately help the author improve their article. So be polite, honest and clear. You should also try to be objective and constructive, not subjective and destructive.

You should also:

  • Write clearly and so you can be understood by people whose first language is not English
  • Avoid complex or unusual words, especially ones that would even confuse native speakers
  • Number your points and refer to page and line numbers in the manuscript when making specific comments
  • If you have been asked to only comment on specific parts or aspects of the manuscript, you should indicate clearly which these are
  • Treat the author's work the way you would like your own to be treated

Most journals give reviewers the option to provide some confidential comments to editors. Often this is where editors will want reviewers to state their recommendation - see the next section - but otherwise this area is best reserved for communicating malpractice such as suspected plagiarism, fraud, unattributed work, unethical procedures, duplicate publication, bias or other conflicts of interest.

However, this doesn't give reviewers permission to 'backstab' the author. Authors can't see this feedback and are unable to give their side of the story unless the editor asks them to. So in the spirit of fairness, write comments to editors as though authors might read them too.

Reviewers should check the preferences of individual journals as to where they want review decisions to be stated. In particular, bear in mind that some journals will not want the recommendation included in any comments to authors, as this can cause editors difficulty later - see Section 11 for more advice about working with editors.

You will normally be asked to indicate your recommendation (e.g. accept, reject, revise and resubmit, etc.) from a fixed-choice list and then to enter your comments into a separate text box.

Recommending Acceptance

If you're recommending acceptance, give details outlining why, and if there are any areas that could be improved. Don't just give a short, cursory remark such as 'great, accept'. See Improving the Manuscript

Recommending Revision

Where improvements are needed, a recommendation for major or minor revision is typical. You may also choose to state whether you opt in or out of the post-revision review too. If recommending revision, state specific changes you feel need to be made. The author can then reply to each point in turn.

Some journals offer the option to recommend rejection with the possibility of resubmission – this is most relevant where substantial, major revision is necessary.

What can reviewers do to help? " Be clear in their comments to the author (or editor) which points are absolutely critical if the paper is given an opportunity for revisio n." (Jonathon Halbesleben, Editor of Journal of Occupational and Organizational Psychology)

Recommending Rejection

If recommending rejection or major revision, state this clearly in your review (and see the next section, 'When recommending rejection').

Where manuscripts have serious flaws you should not spend any time polishing the review you've drafted or give detailed advice on presentation.

Editors say, " If a reviewer suggests a rejection, but her/his comments are not detailed or helpful, it does not help the editor in making a decision ."

In your recommendations for the author, you should:

  • Give constructive feedback describing ways that they could improve the research
  • Keep the focus on the research and not the author. This is an extremely important part of your job as a reviewer
  • Avoid making critical confidential comments to the editor while being polite and encouraging to the author - the latter may not understand why their manuscript has been rejected. Also, they won't get feedback on how to improve their research and it could trigger an appeal

Remember to give constructive criticism even if recommending rejection. This helps developing researchers improve their work and explains to the editor why you felt the manuscript should not be published.

" When the comments seem really positive, but the recommendation is rejection…it puts the editor in a tough position of having to reject a paper when the comments make it sound like a great paper ." (Jonathon Halbesleben, Editor of Journal of Occupational and Organizational Psychology)

Visit our Wiley Author Learning and Training Channel for expert advice on peer review.

Watch the video, Ethical considerations of Peer Review

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Literature Review | Guide, Examples, & Templates

How to Write a Literature Review | Guide, Examples, & Templates

Published on January 2, 2023 by Shona McCombes . Revised on September 11, 2023.

What is a literature review? A literature review is a survey of scholarly sources on a specific topic. It provides an overview of current knowledge, allowing you to identify relevant theories, methods, and gaps in the existing research that you can later apply to your paper, thesis, or dissertation topic .

There are five key steps to writing a literature review:

  • Search for relevant literature
  • Evaluate sources
  • Identify themes, debates, and gaps
  • Outline the structure
  • Write your literature review

A good literature review doesn’t just summarize sources—it analyzes, synthesizes , and critically evaluates to give a clear picture of the state of knowledge on the subject.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

What is the purpose of a literature review, examples of literature reviews, step 1 – search for relevant literature, step 2 – evaluate and select sources, step 3 – identify themes, debates, and gaps, step 4 – outline your literature review’s structure, step 5 – write your literature review, free lecture slides, other interesting articles, frequently asked questions, introduction.

  • Quick Run-through
  • Step 1 & 2

When you write a thesis , dissertation , or research paper , you will likely have to conduct a literature review to situate your research within existing knowledge. The literature review gives you a chance to:

  • Demonstrate your familiarity with the topic and its scholarly context
  • Develop a theoretical framework and methodology for your research
  • Position your work in relation to other researchers and theorists
  • Show how your research addresses a gap or contributes to a debate
  • Evaluate the current state of research and demonstrate your knowledge of the scholarly debates around your topic.

Writing literature reviews is a particularly important skill if you want to apply for graduate school or pursue a career in research. We’ve written a step-by-step guide that you can follow below.

Literature review guide

The only proofreading tool specialized in correcting academic writing - try for free!

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

how to write novelty of research paper

Try for free

Writing literature reviews can be quite challenging! A good starting point could be to look at some examples, depending on what kind of literature review you’d like to write.

  • Example literature review #1: “Why Do People Migrate? A Review of the Theoretical Literature” ( Theoretical literature review about the development of economic migration theory from the 1950s to today.)
  • Example literature review #2: “Literature review as a research methodology: An overview and guidelines” ( Methodological literature review about interdisciplinary knowledge acquisition and production.)
  • Example literature review #3: “The Use of Technology in English Language Learning: A Literature Review” ( Thematic literature review about the effects of technology on language acquisition.)
  • Example literature review #4: “Learners’ Listening Comprehension Difficulties in English Language Learning: A Literature Review” ( Chronological literature review about how the concept of listening skills has changed over time.)

You can also check out our templates with literature review examples and sample outlines at the links below.

Download Word doc Download Google doc

Before you begin searching for literature, you need a clearly defined topic .

If you are writing the literature review section of a dissertation or research paper, you will search for literature related to your research problem and questions .

Make a list of keywords

Start by creating a list of keywords related to your research question. Include each of the key concepts or variables you’re interested in, and list any synonyms and related terms. You can add to this list as you discover new keywords in the process of your literature search.

  • Social media, Facebook, Instagram, Twitter, Snapchat, TikTok
  • Body image, self-perception, self-esteem, mental health
  • Generation Z, teenagers, adolescents, youth

Search for relevant sources

Use your keywords to begin searching for sources. Some useful databases to search for journals and articles include:

  • Your university’s library catalogue
  • Google Scholar
  • Project Muse (humanities and social sciences)
  • Medline (life sciences and biomedicine)
  • EconLit (economics)
  • Inspec (physics, engineering and computer science)

You can also use boolean operators to help narrow down your search.

Make sure to read the abstract to find out whether an article is relevant to your question. When you find a useful book or article, you can check the bibliography to find other relevant sources.

You likely won’t be able to read absolutely everything that has been written on your topic, so it will be necessary to evaluate which sources are most relevant to your research question.

For each publication, ask yourself:

  • What question or problem is the author addressing?
  • What are the key concepts and how are they defined?
  • What are the key theories, models, and methods?
  • Does the research use established frameworks or take an innovative approach?
  • What are the results and conclusions of the study?
  • How does the publication relate to other literature in the field? Does it confirm, add to, or challenge established knowledge?
  • What are the strengths and weaknesses of the research?

Make sure the sources you use are credible , and make sure you read any landmark studies and major theories in your field of research.

You can use our template to summarize and evaluate sources you’re thinking about using. Click on either button below to download.

Take notes and cite your sources

As you read, you should also begin the writing process. Take notes that you can later incorporate into the text of your literature review.

It is important to keep track of your sources with citations to avoid plagiarism . It can be helpful to make an annotated bibliography , where you compile full citation information and write a paragraph of summary and analysis for each source. This helps you remember what you read and saves time later in the process.

To begin organizing your literature review’s argument and structure, be sure you understand the connections and relationships between the sources you’ve read. Based on your reading and notes, you can look for:

  • Trends and patterns (in theory, method or results): do certain approaches become more or less popular over time?
  • Themes: what questions or concepts recur across the literature?
  • Debates, conflicts and contradictions: where do sources disagree?
  • Pivotal publications: are there any influential theories or studies that changed the direction of the field?
  • Gaps: what is missing from the literature? Are there weaknesses that need to be addressed?

This step will help you work out the structure of your literature review and (if applicable) show how your own research will contribute to existing knowledge.

  • Most research has focused on young women.
  • There is an increasing interest in the visual aspects of social media.
  • But there is still a lack of robust research on highly visual platforms like Instagram and Snapchat—this is a gap that you could address in your own research.

There are various approaches to organizing the body of a literature review. Depending on the length of your literature review, you can combine several of these strategies (for example, your overall structure might be thematic, but each theme is discussed chronologically).

Chronological

The simplest approach is to trace the development of the topic over time. However, if you choose this strategy, be careful to avoid simply listing and summarizing sources in order.

Try to analyze patterns, turning points and key debates that have shaped the direction of the field. Give your interpretation of how and why certain developments occurred.

If you have found some recurring central themes, you can organize your literature review into subsections that address different aspects of the topic.

For example, if you are reviewing literature about inequalities in migrant health outcomes, key themes might include healthcare policy, language barriers, cultural attitudes, legal status, and economic access.

Methodological

If you draw your sources from different disciplines or fields that use a variety of research methods , you might want to compare the results and conclusions that emerge from different approaches. For example:

  • Look at what results have emerged in qualitative versus quantitative research
  • Discuss how the topic has been approached by empirical versus theoretical scholarship
  • Divide the literature into sociological, historical, and cultural sources

Theoretical

A literature review is often the foundation for a theoretical framework . You can use it to discuss various theories, models, and definitions of key concepts.

You might argue for the relevance of a specific theoretical approach, or combine various theoretical concepts to create a framework for your research.

Like any other academic text , your literature review should have an introduction , a main body, and a conclusion . What you include in each depends on the objective of your literature review.

The introduction should clearly establish the focus and purpose of the literature review.

Depending on the length of your literature review, you might want to divide the body into subsections. You can use a subheading for each theme, time period, or methodological approach.

As you write, you can follow these tips:

  • Summarize and synthesize: give an overview of the main points of each source and combine them into a coherent whole
  • Analyze and interpret: don’t just paraphrase other researchers — add your own interpretations where possible, discussing the significance of findings in relation to the literature as a whole
  • Critically evaluate: mention the strengths and weaknesses of your sources
  • Write in well-structured paragraphs: use transition words and topic sentences to draw connections, comparisons and contrasts

In the conclusion, you should summarize the key findings you have taken from the literature and emphasize their significance.

When you’ve finished writing and revising your literature review, don’t forget to proofread thoroughly before submitting. Not a language expert? Check out Scribbr’s professional proofreading services !

This article has been adapted into lecture slides that you can use to teach your students about writing a literature review.

Scribbr slides are free to use, customize, and distribute for educational purposes.

Open Google Slides Download PowerPoint

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A literature review is a survey of scholarly sources (such as books, journal articles, and theses) related to a specific topic or research question .

It is often written as part of a thesis, dissertation , or research paper , in order to situate your work in relation to existing knowledge.

There are several reasons to conduct a literature review at the beginning of a research project:

  • To familiarize yourself with the current state of knowledge on your topic
  • To ensure that you’re not just repeating what others have already done
  • To identify gaps in knowledge and unresolved problems that your research can address
  • To develop your theoretical framework and methodology
  • To provide an overview of the key findings and debates on the topic

Writing the literature review shows your reader how your work relates to existing research and what new insights it will contribute.

The literature review usually comes near the beginning of your thesis or dissertation . After the introduction , it grounds your research in a scholarly field and leads directly to your theoretical framework or methodology .

A literature review is a survey of credible sources on a topic, often used in dissertations , theses, and research papers . Literature reviews give an overview of knowledge on a subject, helping you identify relevant theories and methods, as well as gaps in existing research. Literature reviews are set up similarly to other  academic texts , with an introduction , a main body, and a conclusion .

An  annotated bibliography is a list of  source references that has a short description (called an annotation ) for each of the sources. It is often assigned as part of the research process for a  paper .  

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, September 11). How to Write a Literature Review | Guide, Examples, & Templates. Scribbr. Retrieved February 19, 2024, from https://www.scribbr.com/dissertation/literature-review/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, what is a theoretical framework | guide to organizing, what is a research methodology | steps & tips, how to write a research proposal | examples & templates, what is your plagiarism score.

  • Privacy Policy
  • SignUp/Login

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Conclusion

Research Paper Conclusion – Writing Guide and...

Appendices

Appendices – Writing Guide, Types and Examples

Research Paper Citation

How to Cite Research Paper – All Formats and...

Research Report

Research Report – Example, Writing Guide and...

Delimitations

Delimitations in Research – Types, Examples and...

Scope of the Research

Scope of the Research – Writing Guide and...

  • Skip to Guides Search
  • Skip to breadcrumb
  • Skip to main content
  • Skip to footer
  • Skip to chat link
  • Report accessibility issues and get help
  • Go to Penn Libraries Home
  • Go to Franklin catalog

Critical Writing Program: Decision Making - Spring 2024: Researching the White Paper

  • Getting started
  • News and Opinion Sites
  • Academic Sources
  • Grey Literature
  • Substantive News Sources
  • What to Do When You Are Stuck
  • Understanding a citation
  • Examples of Quotation
  • Examples of Paraphrase
  • Chicago Manual of Style: Citing Images
  • Researching the Op-Ed
  • Researching Prospective Employers
  • Resume Resources
  • Cover Letter Resources

Research the White Paper

Researching the White Paper:

The process of researching and composing a white paper shares some similarities with the kind of research and writing one does for a high school or college research paper. What’s important for writers of white papers to grasp, however, is how much this genre differs from a research paper.  First, the author of a white paper already recognizes that there is a problem to be solved, a decision to be made, and the job of the author is to provide readers with substantive information to help them make some kind of decision--which may include a decision to do more research because major gaps remain. 

Thus, a white paper author would not “brainstorm” a topic. Instead, the white paper author would get busy figuring out how the problem is defined by those who are experiencing it as a problem. Typically that research begins in popular culture--social media, surveys, interviews, newspapers. Once the author has a handle on how the problem is being defined and experienced, its history and its impact, what people in the trenches believe might be the best or worst ways of addressing it, the author then will turn to academic scholarship as well as “grey” literature (more about that later).  Unlike a school research paper, the author does not set out to argue for or against a particular position, and then devote the majority of effort to finding sources to support the selected position.  Instead, the author sets out in good faith to do as much fact-finding as possible, and thus research is likely to present multiple, conflicting, and overlapping perspectives. When people research out of a genuine desire to understand and solve a problem, they listen to every source that may offer helpful information. They will thus have to do much more analysis, synthesis, and sorting of that information, which will often not fall neatly into a “pro” or “con” camp:  Solution A may, for example, solve one part of the problem but exacerbate another part of the problem. Solution C may sound like what everyone wants, but what if it’s built on a set of data that have been criticized by another reliable source?  And so it goes. 

For example, if you are trying to write a white paper on the opioid crisis, you may focus on the value of  providing free, sterilized needles--which do indeed reduce disease, and also provide an opportunity for the health care provider distributing them to offer addiction treatment to the user. However, the free needles are sometimes discarded on the ground, posing a danger to others; or they may be shared; or they may encourage more drug usage. All of those things can be true at once; a reader will want to know about all of these considerations in order to make an informed decision. That is the challenging job of the white paper author.     
 The research you do for your white paper will require that you identify a specific problem, seek popular culture sources to help define the problem, its history, its significance and impact for people affected by it.  You will then delve into academic and grey literature to learn about the way scholars and others with professional expertise answer these same questions. In this way, you will create creating a layered, complex portrait that provides readers with a substantive exploration useful for deliberating and decision-making. You will also likely need to find or create images, including tables, figures, illustrations or photographs, and you will document all of your sources. 

Business & Research Support Services Librarian

Profile Photo

Connect to a Librarian Live Chat or "Ask a Question"

  • Librarians staff live chat from 9-5 Monday through Friday . You can also text to chat: 215-543-7674
  • You can submit a question 24 hours a day and we aim to respond within 24 hours 
  • You can click the "Schedule Appointment" button above in librarian's profile box (to the left), to schedule a consultation with her in person or by video conference.  
  • You can also make an appointment with a  Librarian by subject specialization . 
  • Connect by email with a subject librarian

Find more easy contacts at our Quick Start Guide

  • Next: Getting started >>
  • Last Updated: Feb 15, 2024 12:28 PM
  • URL: https://guides.library.upenn.edu/spring2024/decision-making

IMAGES

  1. How to write about methodology in a research paper

    how to write novelty of research paper

  2. Reasearch Ideas for High School Students

    how to write novelty of research paper

  3. How to Write a Great Research Paper

    how to write novelty of research paper

  4. Tips for writing a research paper

    how to write novelty of research paper

  5. How to write a thesis for a research paper

    how to write novelty of research paper

  6. (PDF) Self-referential basis of undecidable dynamics: from the Liar

    how to write novelty of research paper

COMMENTS

  1. How can I highlight the novelty of my research in the manuscript?

    Answer: The best way to highlight the novelty in your study is by comparing it with the work that was done by others and pointing out the things that your study does which was never done before. To do this, you should first c onduct a thorough literature search to identify what is already known in your field of research and what are the gaps to ...

  2. Novelty in research: What it is and how to know if your work is

    The word 'novelty' comes from the Latin word 'novus,' which simply means new. Apart from new, the term is also associated with things, ideas or products for instance, that are original or unusual. Novelty in research refers to the introduction of a new idea or a unique perspective that adds to the existing knowledge in a particular ...

  3. How to highlight novelty in your research paper?

    To highlight novelty in the research paper mention important features in abstract or in the conclusion part of the research article. Write short sentences. Summarize the result of each experiment ...

  4. Novelty in research: What it is and how to know if your work is

    Novelty in research refers to the introduction of a modern idea or an unique objective ensure adds to the existing knowledge in a particular field a study. It involves bringing something fresh and original to the table that has not been through before otherwise exploring an existing topic in a new the innovative way.

  5. What is novelty in research?

    Answer: Novelty is a very important aspect of research. It is true that research has progressed tremendously in the past two decades due to the advent and accessibility of new technologies that enable goods and data sharing. Consequently, it might be difficult to find a topic about which nothing is known or no literature is available.

  6. How can I highlight the novelty of my paper to improve its ...

    Here are a couple of resources to help you write these various sections: 4 Step approach to writing the Introduction section of a research paper. The secret to writing the Results and Discussion sections of a manuscript. As you see, if your study is indeed novel, it is important to establish and discuss its novelty throughout the paper.

  7. Novelty in Research Part 1

    Novelty is the quality of being new, original or unusual. This Video demonstrates ways of achieving Novelty in Social Sciences Research.

  8. How to ensure novelty effect in research?

    How to ensure and verify the novelty effect. Whether your research reports something completely new or furthers an existing field in a new way, you need to make sure the contribution is indeed new. Do your homework: Pore through the literature (in as many languages as possible) to make sure your idea is indeed new, or significantly different ...

  9. Tips for Reading and Writing an ML Research Paper

    Critical Aspects of a Research Paper Novelty. Novelty is a tricky topic in science. Research obviously has to produce new knowledge, but this can mean different thigs for different people, and sometimes the communities have overvalued a type of knowledge at the expense of the others, mostly because of research trends or what was perceived "difficult" at the time.

  10. Novelty in research: A common reason for manuscript rejection!

    Novelty on the other hand is defined as 'the quality of being new, original, or unusual' or a 'new or unfamiliar thing or experience'. Therefore, adding the adjective novel along with research is actually one of the most common redundancies that is similar to 'return back' or 'revert back' and denotes one and the same thing!

  11. Toolkit: How to write a great paper

    A clear format will ensure that your research paper is understood by your readers. Follow: 1. Context — your introduction. 2. Content — your results. 3. Conclusion — your discussion. Plan ...

  12. How to write a research paper

    Then, writing the paper and getting it ready for submission may take me 3 to 6 months. I like separating the writing into three phases. The results and the methods go first, as this is where I write what was done and how, and what the outcomes were. In a second phase, I tackle the introduction and refine the results section with input from my ...

  13. What are the criteria for 'novelty' in the PhD thesis?

    A thesis: one coherent over-riding 'story' or argument that embodies a research insight. Situation in existing knowledge: a critical review of prior research which motivates and justifies the ...

  14. How should novelty be valued in science?

    I cite to papers documenting the exponential rise in claims to novelty. 3) In addition to the relationship between novelty and philosophical and sociological factors it would be good to discuss how competition for funding and jobs seems to be reducing novelty - as outlined, for example, in the following passage from Alberts et al. 2014.

  15. Q: How to add theoretical novelty to my research paper?

    You can, therefore, highlight the novelty of the analysis. Try to find out if any similar analysis has been done before and if not, emphasize this. Explain how this analysis will be helpful to image processing and what it will add to the existing literature. To highlight the novelty of your study, you will need to do a thorough literature ...

  16. How to Write a Research Paper

    Choose a research paper topic. Conduct preliminary research. Develop a thesis statement. Create a research paper outline. Write a first draft of the research paper. Write the introduction. Write a compelling body of text. Write the conclusion. The second draft.

  17. HOW TO HIGHLIGHT NOVELTY OF YOU RESEARCH WORK?

    From our experience, the most difficult thing to start writing is to write the first sentence. Here are some idea to spark your momentum to start the first sentence. Please see attached figure for ...

  18. Step by Step Guide to Reviewing a Manuscript

    Briefly summarize what the paper is about and what the findings are. Try to put the findings of the paper into the context of the existing literature and current knowledge. Indicate the significance of the work and if it is novel or mainly confirmatory. Indicate the work's strengths, its quality and completeness.

  19. How to Write a Literature Review

    Examples of literature reviews. Step 1 - Search for relevant literature. Step 2 - Evaluate and select sources. Step 3 - Identify themes, debates, and gaps. Step 4 - Outline your literature review's structure. Step 5 - Write your literature review.

  20. How to review a paper

    It usually takes me a few hours. Most of the time is spent closely reading the paper and taking notes. Once I have the notes, writing the review itself generally takes less than an hour. - Walsh. It can take me quite a long time to write a good review, sometimes a full day of work and sometimes even longer.

  21. How to Write a Novelty Cover Letter for Scientific Journals

    1 Address the editor. The first step in writing a cover letter is to address the editor of the journal by name, if possible, or by their title, if not. This shows that you have done some research ...

  22. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  23. Q: How can I judge the novelty of my study?

    The only way to get a realistic view about the novelty of your study is by comparing it with other works in the field. You need to conduct an exhaustive literature search to find out if the topic of your research has been dealt with previously and how. You should then compare the research question, methodology, and results with the other ...

  24. Guides: Critical Writing Program: Decision Making

    Unlike a school research paper, the author does not set out to argue for or against a particular position, and then devote the majority of effort to finding sources to support the selected position. ... For example, if you are trying to write a white paper on the opioid crisis, you may focus on the value of providing free, sterilized needles ...