Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Review Article
  • Published: 09 April 2021

Phase transitions in 2D materials

  • Wenbin Li   ORCID: orcid.org/0000-0002-1240-2707 1 ,
  • Xiaofeng Qian   ORCID: orcid.org/0000-0003-1627-288X 2 &
  • Ju Li   ORCID: orcid.org/0000-0002-7841-8058 3  

Nature Reviews Materials volume  6 ,  pages 829–846 ( 2021 ) Cite this article

16k Accesses

146 Citations

6 Altmetric

Metrics details

  • Phase transitions and critical phenomena
  • Two-dimensional materials

The discovery and control of new phases of matter is a central endeavour in materials research. The emergence of atomically thin 2D materials, such as transition-metal dichalcogenides and monochalcogenides, has allowed the study of diffusive, displacive and quantum phase transitions in 2D. In this Review, we discuss the thermodynamic and kinetic features of 2D phase transitions arising from dimensionality confinement, elasticity, electrostatics, defects and chemistry unique to 2D materials. We highlight polymorphic, ferroic and high-temperature diffusive phase changes, and examine the technological potential of controlled 2D phase transitions. Finally, we give an outlook to future opportunities in the study and applications of 2D phase transitions, and identify key challenges that remain to be addressed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Recent progress in the role of grain boundaries in two-dimensional transition metal dichalcogenides studied using scanning tunneling microscopy/spectroscopy

  • Hyo Won Kim

Applied Microscopy Open Access 17 July 2023

Light-induced hexatic state in a layered quantum material

  • Till Domröse
  • , Thomas Danz
  •  …  Claus Ropers

Nature Materials Open Access 06 July 2023

Recent developments in CVD growth and applications of 2D transition metal dichalcogenides

  •  …  Jun He

Frontiers of Physics Open Access 17 May 2023

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

111,21 € per year

only 9,27 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

phase transitions research paper

Ma, S. Modern Theory of Critical Phenomena (W. A. Benjamin, Advanced Book Program, 1976).

Goldenfeld, N. Lectures on Phase Transitions and the Renormalization Group (Addison-Wesley, 1992).

Christian, J. W. The Theory of Transformations in Metals and Alloys 3rd edn (Pergamon, 2002).

Sachdev, S. Quantum Phase Transitions 2nd edn (Cambridge Univ. Press, 2011).

Fradkin, E. Field Theories of Condensed Matter Physics 2nd edn (Cambridge Univ. Press, 2013).

Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102 , 10451–10453 (2005).

Article   CAS   Google Scholar  

Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7 , 699–712 (2012).

Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353 , aac9439 (2016).

Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2 , 17033 (2017).

Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13 , 931–937 (2017).

Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65 , 117–149 (1944).

Hohenberg, P. C. Existence of long-range order in one and two dimensions. Phys. Rev. 158 , 383–386 (1967).

Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett. 17 , 1133–1136 (1966).

Kosterlitz, J. M. & Thouless, D. J. Long range order and metastability in two dimensional solids and superfluids. (Application of dislocation theory). J. Phys. C Solid State Phys. 5 , L124–L126 (1972).

Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6 , 1181–1203 (1973).

Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45 , 494–497 (1980).

Article   Google Scholar  

Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48 , 1559–1562 (1982).

Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49 , 57–61 (1982).

Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56 , 930–933 (1986).

Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. 7 × 7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50 , 120–123 (1983).

Zhang, J., Liu, J., Huang, J. L., Kim, P. & Lieber, C. M. Creation of nanocrystals through a solid-solid phase transition induced by an STM tip. Science 274 , 757–760 (1996).

Kaganer, V. M., Möhwald, H. & Dutta, P. Structure and phase transitions in Langmuir monolayers. Rev. Mod. Phys. 71 , 779–819 (1999).

Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306 , 666–669 (2004).

Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438 , 201–204 (2005).

Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462 , 196–199 (2009).

Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462 , 192–195 (2009).

Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556 , 80–84 (2018).

Xi, X. X. et al. Ising pairing in superconducting NbSe 2 atomic layers. Nat. Phys. 12 , 139–143 (2016).

Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2 , 16094 (2017).

Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556 , 43–50 (2018).

Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95 , 226801 (2005).

Konig, M. et al. Quantum spin hall insulator state in HgTe quantum wells. Science 318 , 766–770 (2007).

Qian, X. F., Liu, J. W., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346 , 1344–1347 (2014). This paper predicts that several group 6 transition-metal dichalcogenide monolayers in 1T ′ phase are quantum spin Hall insulators competing with the trivial semiconducting 1H phase and metallic 1T phase .

Tang, S. J. et al. Quantum spin Hall state in monolayer 1T′-WTe 2 . Nat. Phys. 13 , 683–687 (2017).

Wu, S. F. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359 , 76–79 (2018).

Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579 , 56–61 (2020).

Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367 , 900–903 (2020).

Polshyn, H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 588 , 66–70 (2020).

Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546 , 270–273 (2017). The first demonstration that intrinsic ferromagnetism can be present in monolayer CrI 3 .

Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546 , 265–269 (2017). The first demonstration of layer-dependent ferromagnetic transition in 2D Cr 2 Ge 2 Te 6 .

Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563 , 47–52 (2018).

Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363 , eaav4450 (2019).

Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14 , 408–419 (2019).

Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1 , 646–661 (2019).

Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19 , 1276–1289 (2020).

Eda, G. et al. Coherent atomic and electronic heterostructures of single-layer MoS 2 . ACS Nano 6 , 7311–7317 (2012).

Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS 2 transistors. Nat. Mater. 13 , 1128–1134 (2014).

Duerloo, K.-A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5 , 4214 (2014). This paper reports the first comprehensive theoretical study of structural phase transitions in monolayer transition-metal dichalcogenides .

Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe 2 . Nat. Phys. 11 , 482–486 (2015).

Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe 2 . Science 349 , 625–628 (2015).

Wang, Y. et al. Structural phase transition in monolayer MoTe 2 driven by electrostatic doping. Nature 550 , 487–491 (2017).

Zhang, F. et al. Electric-field induced structural transition in vertical MoTe 2 - and Mo 1− x W x Te 2 -based resistive memories. Nat. Mater. 18 , 55–61 (2019).

Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565 , 61–66 (2019).

Xiao, J. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 16 , 1028–1034 (2020). The first experimental demonstration of the theoretically predicted ferroelectric nonlinear Hall effect and Berry curvature memory in 2D semimetals .

Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353 , 274–278 (2016). The first experimental report of in-plane ferroelectricity in an atomically thin material .

Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in In 2 Se 3 and other III 2 -VI 3 van der Waals materials. Nat. Commun. 8 , 14956 (2017). The first theoretical prediction of simultaneous out-of-plane and in-plane ferroelectricity in monolayer α-In 2 Se 3 .

Li, W. B. & Li, J. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers. Nat. Commun. 7 , 10843 (2016). One of the earliest studies of ferroelasticity and ferroelastic transitions in 2D materials .

Wang, H. & Qian, X. Two-dimensional multiferroics in monolayer group IV monochalcogenides. 2D Mater. 4 , 015042 (2017).

Zhou, J., Xu, H. W., Li, Y. F., Jaramillo, R. & Li, J. Opto-mechanics driven fast martensitic transition in two-dimensional materials. Nano Lett. 18 , 7794–7800 (2018).

Xu, H., Zhou, J., Li, Y., Jaramillo, R. & Li, J. Optomechanical control of stacking patterns of h-BN bilayer. Nano Res. 12 , 2634–2639 (2019).

Mishin, Y., Asta, M. & Li, J. Atomistic modeling of interfaces and their impact on microstructure and properties. Acta Mater. 58 , 1117–1151 (2010).

Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 176 , 250–254 (1968).

Splendiani, A. et al. Emerging photoluminescence in monolayer MoS 2 . Nano Lett. 10 , 1271–1275 (2010).

Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS 2 : a new direct-gap semiconductor. Phys. Rev. Lett. 105 , 136805 (2010).

Sohier, T., Gibertini, M., Calandra, M., Mauri, F. & Marzari, N. Breakdown of optical phonons’ splitting in two-dimensional materials. Nano Lett. 17 , 3758–3763 (2017).

Cudazzo, P., Tokatly, I. V. & Rubio, A. Dielectric screening in two-dimensional insulators: implications for excitonic and impurity states in graphane. Phys. Rev. B 84 , 085406 (2011).

Xi, X. X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe 2 . Nat. Nanotechnol. 10 , 765–769 (2015).

Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338 , 1193–1196 (2012).

Li, L. J. et al. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 529 , 185–189 (2016).

Fei, Z. Y. et al. Ferroelectric switching of a two-dimensional metal. Nature 560 , 336–339 (2018).

Yang, Q., Wu, M. & Li, J. Origin of two-dimensional vertical ferroelectricity in WTe 2 bilayer and multilayer. J. Phys. Chem. Lett. 9 , 7160–7164 (2018).

Feng, J., Qi, L., Huang, J. Y. & Li, J. Geometric and electronic structure of graphene bilayer edges. Phys. Rev. B 80 , 165407 (2009).

Kushima, A., Qian, X. F., Zhao, P., Zhang, S. L. & Li, J. Ripplocations in van der Waals layers. Nano Lett. 15 , 1302–1308 (2015).

Britnell, L. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 340 , 1311–1314 (2013).

Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323 , 610–613 (2009).

Lin, Y. C., Dumcencon, D. O., Huang, Y. S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS 2 . Nat. Nanotechnol. 9 , 391–396 (2014).

Franklin, B. Of the stilling of waves by means of oil. Philos. Trans. R. Soc. Lond. 64 , 445–460 (1774).

Google Scholar  

Lord Rayleigh Measurements of the amount of oil necessary in order to check the motions of camphor upon water. Proc. R. Soc. Lond. 47 , 364–367 (1890).

Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320 , 1308–1308 (2008).

Rehn, D. A., Li, Y., Pop, E. & Reed, E. J. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials. NPJ Comput. Mater. 4 , 2 (2018).

Simpson, R. E. et al. Interfacial phase-change memory. Nat. Nanotechnol. 6 , 501–505 (2011).

Gu, X. K., Wei, Y. J., Yin, X. B., Li, B. W. & Yang, R. G. Colloquium: Phononic thermal properties of two-dimensional materials. Rev. Mod. Phys. 90 , 041002 (2018).

Li, J. The mechanics and physics of defect nucleation. MRS Bull. 32 , 151–159 (2007).

Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55 , 710–757 (2010).

Yakobson, B. I. Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes. Appl. Phys. Lett. 72 , 918–920 (1998).

Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321 , 385–388 (2008).

Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS 2 . ACS Nano 5 , 9703–9709 (2011).

Li, J., Shan, Z. W. & Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 39 , 108–117 (2014).

Song, S. et al. Room temperature semiconductor–metal transition of MoTe 2 thin films engineered by strain. Nano Lett. 16 , 188–193 (2015).

Hou, W. et al. Strain-based room-temperature non-volatile MoTe 2 ferroelectric phase change transistor. Nat. Nanotechnol. 14 , 668–673 (2019).

Bausch, A. R. et al. Grain boundary scars and spherical crystallography. Science 299 , 1716–1718 (2003).

Masel, R. I. Principles of Adsorption and Reaction on Solid Surfaces (Wiley, 1996).

Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499 , 419–425 (2013).

Jones, D. A. Principles and Prevention of Corrosion 2nd edn (Prentice Hall, 1996).

Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5 , 722–726 (2010). This work shows that hexagonal boron nitride is an excellent material for protecting the properties of 2D materials .

Nine, M. J., Cole, M. A., Tran, D. N. H. & Losic, D. Graphene: a multipurpose material for protective coatings. J. Mater. Chem. A 3 , 12580–12602 (2015).

Su, C. et al. Waterproof molecular monolayers stabilize 2D materials. Proc. Natl Acad. Sci. USA 116 , 20844–20849 (2019).

Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329 , 544–547 (2010).

Feng, J., Qian, X. F., Huang, C. W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6 , 865–871 (2012).

Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS 2 nanosheets for hydrogen evolution. Nat. Mater. 12 , 850–855 (2013).

Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44 , 2702–2712 (2015).

Wang, J., Wei, Y., Li, H., Huang, X. & Zhang, H. Crystal phase control in two-dimensional materials. Sci. China Chem. 61 , 1227–1242 (2018).

Xiao, Y., Zhou, M., Liu, J., Xu, J. & Fu, L. Phase engineering of two-dimensional transition metal dichalcogenides. Sci. China Mater. 62 , 759–775 (2019).

Wang, X. et al. Potential 2D materials with phase transitions: structure, synthesis, and device applications. Adv. Mater. 31 , 1804682 (2019).

Sokolikova, M. S. & Mattevi, C. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev. 49 , 3952–5980 (2020).

Bergeron, H., Lebedev, D. & Hersam, M. C. Polymorphism in post-dichalcogenide two-dimensional materials. Chem. Rev. 121 , 2713–2775 (2021).

Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18 , 193–335 (1969).

Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 8 , 899–907 (2014).

Fei, Z. et al. Edge conduction in monolayer WTe 2 . Nat. Phys. 13 , 677–682 (2017).

Zheng, F. et al. On the quantum spin Hall gap of monolayer 1T′-WTe 2 . Adv. Mater. 28 , 4845–4851 (2016).

Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362 , 922–925 (2018).

Duerloo, K.-A. N. & Reed, E. J. Structural phase transitions by design in monolayer alloys. ACS Nano 10 , 289–297 (2015).

Li, Y., Duerloo, K.-A. N., Wauson, K. & Reed, E. J. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 7 , 10671 (2016).

Py, M. A. & Haering, R. R. Structural destabilization induced by lithium intercalation in MoS 2 and related compounds. Can. J. Phys. 61 , 76–84 (1983).

Gordon, R. A., Yang, D., Crozier, E. D., Jiang, D. T. & Frindt, R. F. Structures of exfoliated single layers of WS 2 , MoS 2 , and MoSe 2 in aqueous suspension. Phys. Rev. B 65 , 125407 (2002).

Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5 , 263–275 (2013).

Wadhawan, V. K. Introduction to Ferroic Materials (Gordon & Breach, 2000).

Wang, G.-Y. et al. Formation mechanism of twin domain boundary in 2D materials: The case for WTe 2 . Nano Res. 12 , 569–573 (2019).

Pedramrazi, Z. et al. Manipulating topological domain boundaries in the single-layer quantum spin Hall insulator 1T′–WSe 2 . Nano Lett. 19 , 5634–5639 (2019).

Kim, H. W. et al. Symmetry dictated grain boundary state in a two-dimensional topological insulator. Nano Lett. 20 , 5837–5843 (2020).

Seixas, L., Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Multiferroic two-dimensional materials. Phys. Rev. Lett. 116 , 206803 (2016).

Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77 , 1083–1130 (2005).

Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303 , 488–491 (2004).

Wu, M. & Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 16 , 3236–3241 (2016).

Fei, R., Kang, W. & Yang, L. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett. 117 , 097601 (2016).

Hanakata, P. Z., Carvalho, A., Campbell, D. K. & Park, H. S. Polarization and valley switching in monolayer group-IV monochalcogenides. Phys. Rev. B 94 , 035304 (2016).

Mehboudi, M. et al. Structural phase transition and material properties of few-layer monochalcogenides. Phys. Rev. Lett. 117 , 246802 (2016).

Mehboudi, M. et al. Two-dimensional disorder in black phosphorus and monochalcogenide monolayers. Nano Lett. 16 , 1704–1712 (2016).

Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In 2 Se 3 nanoflakes. Nano Lett. 17 , 5508–5513 (2017).

Cui, C. et al. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In 2 Se 3 . Nano Lett. 18 , 1253–1258 (2018).

Xiao, J. et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys. Rev. Lett. 120 , 227601 (2018).

Zheng, C. et al. Room temperature in-plane ferroelectricity in van der Waals In 2 Se 3 . Sci. Adv. 4 , eaar7720 (2018).

Belianinov, A. et al. CuInP 2 S 6 room temperature layered ferroelectric. Nano Lett. 15 , 3808–3814 (2015).

Liu, F. et al. Room-temperature ferroelectricity in CuInP 2 S 6 ultrathin flakes. Nat. Commun. 7 , 12357 (2016).

Yuan, S. et al. Room-temperature ferroelectricity in MoTe 2 down to the atomic monolayer limit. Nat. Commun. 10 , 1775 (2019).

Shirodkar, S. N. & Waghmare, U. V. Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS 2 . Phys. Rev. Lett. 112 , 157601 (2014).

Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527 , 495–498 (2015).

Brown, B. E. The crystal structures of WTe 2 and high-temperature MoTe 2 . Acta Crystallogr. 20 , 268–274 (1966).

Cochran, W. Crystal stability and the theory of ferroelectricity. Adv. Phys. 9 , 387–423 (1960).

Wang, H. & Qian, X. Ferroelectric nonlinear anomalous Hall effect in few-layer WTe 2 . NPJ Comput. Mater. 5 , 119 (2019).

Herring, C. & Kittel, C. On the theory of spin waves in ferromagnetic media. Phys. Rev. 81 , 869–880 (1951).

Fröhlich, J. & Lieb, E. H. Existence of phase transitions for anisotropic Heisenberg models. Phys. Rev. Lett. 38 , 440–442 (1977).

Li, W. et al. High temperature ferromagnetism in π-conjugated two-dimensional metal–organic frameworks. Chem. Sci. 8 , 2859–2867 (2017).

Wang, H., Qi, J. & Qian, X. Electrically tunable high Curie temperature two-dimensional ferromagnetism in van der Waals layered crystals. Appl. Phys. Lett. 117 , 083102 (2020).

Jiang, Z., Wang, P., Xing, J., Jiang, X. & Zhao, J. Screening and design of novel 2D ferromagnetic materials with high Curie temperature above room temperature. ACS Appl. Mater. Interfaces 10 , 39032–39039 (2018).

Telford, E. J. et al. layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32 , 2003240 (2020).

Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Preprint at arXiv https://arxiv.org/abs/2007.10715 (2020).

Zhuang, H. L., Kent, P. R. C. & Hennig, R. G. Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe 3 GeTe 2 . Phys. Rev. B 93 , 134407 (2016).

Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe 3 GeTe 2 . Nature 563 , 94–99 (2018).

Bogaert, K. et al. Diffusion-mediated synthesis of MoS 2 /WS 2 lateral heterostructures. Nano Lett. 16 , 5129–5134 (2016).

Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556 , 355–359 (2018).

Li, X. et al. Surfactant-mediated growth and patterning of atomically thin transition metal dichalcogenides. ACS Nano 6 , 6570–6581 (2020).

Zhu, J. et al. Argon plasma induced phase transition in monolayer MoS 2 . J. Am. Chem. Soc. 139 , 10216–10219 (2017).

Zhou, L. et al. Large-area synthesis of high-quality uniform few-layer MoTe 2 . J. Am. Chem. Soc. 137 , 11892–11895 (2015).

Liu, L. N. et al. Phase-selective synthesis of 1T′ MoS 2 monolayers and heterophase bilayers. Nat. Mater. 17 , 1108–1114 (2018).

Rao, F. et al. Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing. Science 358 , 1423–1426 (2017).

Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4 , 150–168 (2019).

Kalikka, J. et al. Strain-engineered diffusive atomic switching in two-dimensional crystals. Nat. Commun. 7 , 11983 (2016).

Ding, K. et al. Phase-change heterostructure enables ultralow noise and drift for memory operation. Science 366 , 210–215 (2019).

Wu, J. et al. High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nat. Electron. 3 , 466–472 (2020).

Shi, G. & Kioupakis, E. Anisotropic spin transport and strong visible-light absorbance in few-layer SnSe and GeSe. Nano Lett. 15 , 6926–6931 (2015).

Zhu, X. J., Li, D., Liang, X. G. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS 2 devices for neuromorphic computing. Nat. Mater. 18 , 141–148 (2019).

Zhang, X. et al. Two-dimensional MoS 2 -enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566 , 368–372 (2019).

Wang, H. & Qian, X. Ferroicity-driven nonlinear photocurrent switching in time-reversal invariant ferroic materials. Sci. Adv. 5 , eaav9743 (2019).

Peng, B. et al. Phase transition enhanced superior elasticity in freestanding single-crystalline multiferroic BiFeO 3 membranes. Sci. Adv. 6 , eaba5847 (2020).

Jiang, S., Xie, H., Shan, J. & Mak, K. F. Exchange magnetostriction in two-dimensional antiferromagnets. Nat. Mater. 19 , 1295–1299 (2020).

Oganov, A. R., Pickard, C. J., Zhu, Q. & Needs, R. J. Structure prediction drives materials discovery. Nat. Rev. Mater. 4 , 331–348 (2019).

Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559 , 547–555 (2018).

Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and applications of machine learning in solid-state materials science. NPJ Comput. Mater. 5 , 83 (2019).

Cheon, G. et al. Revealing the spectrum of unknown layered materials with superhuman predictive abilities. J. Phys. Chem. Lett. 9 , 6967–6972 (2018).

Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5 , 295–309 (2020).

Souvatzis, P., Eriksson, O., Katsnelson, M. I. & Rudin, S. P. Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys. Rev. Lett. 100 , 095901 (2008).

Lebègue, S., Björkman, T., Klintenberg, M., Nieminen, R. M. & Eriksson, O. Two-dimensional materials from data filtering and ab initio calculations. Phys. Rev. X 3 , 031002 (2013).

Ashton, M., Paul, J., Sinnott, S. B. & Hennig, R. G. Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys. Rev. Lett. 118 , 106101 (2017).

Cheon, G. et al. Data mining for new two- and one-dimensional weakly bonded solids and lattice-commensurate heterostructures. Nano Lett. 17 , 1915–1923 (2017).

Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13 , 246–252 (2018).

Haastrup, S. et al. The computational 2D materials database: high-throughput modeling and discovery of atomically thin crystals. 2D Mater. 5 , 042002 (2018).

Taheri, M. L. et al. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170 , 86–95 (2016).

Lindenberg, A. M., Johnson, S. L. & Reis, D. A. Visualization of atomic-scale motions in materials via femtosecond X-ray scattering techniques. Annu. Rev. Mater. Res. 47 , 425–449 (2017).

Sciaini, G. & Miller, R. J. D. Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Rep. Prog. Phys. 74 , 096101 (2011).

Bovensiepen, U. & Kirchmann, P. S. Elementary relaxation processes investigated by femtosecond photoelectron spectroscopy of two-dimensional materials. Laser Photonics Rev. 6 , 589–606 (2012).

Raschke, M. B. & Shen, Y. R. Nonlinear optical spectroscopy of solid interfaces. Curr. Opin. Solid State Mater. Sci. 8 , 343–352 (2004).

Danz, T., Domröse, T. & Ropers, C. Ultrafast nanoimaging of the order parameter in a structural phase transition. Science 371 , 371–374 (2021).

Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469 , 389–392 (2011).

Fasolino, A., Los, J. H. & Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 6 , 858–861 (2007).

McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15 , 580–584 (2020).

Kim, H.-J., Kang, S.-H., Hamada, I. & Son, Y.-W. Origins of the structural phase transitions in MoTe 2 and WTe 2 . Phys. Rev. B 95 , 180101(R) (2017).

Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108 , 12233–12237 (2011). This paper predicts the existence of strong-correlation physics in magic-angle twisted bilayer graphene .

Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16 , 725–733 (2020).

Qian, X., Wang, Y., Li, W., Lu, J. & Li, J. Modelling of stacked 2D materials and devices. 2D Mater. 2 , 032003 (2015).

Wang, H. & Qian, X. Electrically and magnetically switchable nonlinear photocurrent in PT -symmetric magnetic topological quantum materials. NPJ Comput. Mater. 6 , 199 (2020).

Salén, P. et al. Matter manipulation with extreme terahertz light: Progress in the enabling THz technology. Phys. Rep. 836–837 , 1–74 (2019).

Carr, S., Fang, S. & Kaxiras, E. Electronic-structure methods for twisted moiré layers. Nat. Rev. Mater. 5 , 748–763 (2020).

Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19 , 1265–1275 (2020).

Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17 , 155–163 (2021).

IEEE. International Roadmap for Devices and Systems: 2020 Edition (IEEE, 2020).

Baxter, R. J. Eight-vertex model in lattice statistics. Phys. Rev. Lett. 26 , 832–833 (1971).

Halperin, B. I. & Nelson, D. R. Theory of two-dimensional melting. Phys. Rev. Lett. 41 , 121–124 (1978).

Young, A. P. Melting and the vector Coulomb gas in two dimensions. Phys. Rev. B 19 , 1855–1866 (1979).

Nelson, D. R. & Halperin, B. I. Dislocation-mediated melting in two dimensions. Phys. Rev. B 19 , 2457–2484 (1979).

Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49 , 405–408 (1982).

Laughlin, R. B. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50 , 1395–1398 (1983).

Bednorz, J. G. & Müller, K. A. Possible high T c superconductivity in the Ba–La–Cu–O system. Z. Phys. B Condens. Matter 64 , 189–193 (1986).

Kantor, Y. & Nelson, D. R. Crumpling transition in polymerized membranes. Phys. Rev. Lett. 58 , 2774–2777 (1987).

Kane, C. L. & Mele, E. J. Z (2) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95 , 146802 (2005).

Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11 , 2396–2399 (2011).

Rehn, D. A. & Reed, E. J. Memristors with distorted structures. Nat. Mater. 18 , 8–9 (2019).

Download references

Acknowledgements

J.L. acknowledges support by NSF DMR-1923976. X.Q. acknowledges support by NSF DMR-1753054. W.L. is grateful for the support by NSFC under project no. 62004172, Westlake Multidisciplinary Research Initiative Center (MRIC) under award no. 20200101 and Westlake University HPC Center. We thank the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and affiliations.

School of Engineering and Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Westlake University, Hangzhou, China

Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA

Xiaofeng Qian

Department of Nuclear Science and Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

You can also search for this author in PubMed   Google Scholar

Contributions

J.L. conceived the framework of the Review. All authors researched data for the article, discussed the content and contributed to the writing and revising of the manuscript.

Corresponding authors

Correspondence to Wenbin Li or Ju Li .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Cite this article.

Li, W., Qian, X. & Li, J. Phase transitions in 2D materials. Nat Rev Mater 6 , 829–846 (2021). https://doi.org/10.1038/s41578-021-00304-0

Download citation

Accepted : 01 March 2021

Published : 09 April 2021

Issue Date : September 2021

DOI : https://doi.org/10.1038/s41578-021-00304-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Applied Microscopy (2023)

Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials

  • Ruijie Yang
  • Yingying Fan
  • Zhiyuan Zeng

Nature Synthesis (2023)

Phase-controllable large-area two-dimensional In2Se3 and ferroelectric heterophase junction

  • Xiaodong Zheng

Nature Nanotechnology (2023)

Imperfection-enabled memristive switching in van der Waals materials

  • Mengjiao Li
  • J. Joshua Yang

Nature Electronics (2023)

  • Thomas Danz
  • Claus Ropers

Nature Materials (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

phase transitions research paper

IMAGES

  1. 🎉 Transitions for a research paper. Topic Sentences and Transitions

    phase transitions research paper

  2. Evolution of Phase Transitions

    phase transitions research paper

  3. research paper transition phrases

    phase transitions research paper

  4. Phase Transformation i i

    phase transitions research paper

  5. Phase Transitions and Critical Phenomena (November 1983 edition)

    phase transitions research paper

  6. Download Photoinduced Phase Transitions

    phase transitions research paper

VIDEO

  1. Paper transitions behind the scene #greenscreen #tutorial #transition #shorts

  2. Phased Revision Technique-Learn to Remember what you have Read

COMMENTS

  1. Phase Transitions

    Phase Transitions publishes both research papers and invited articles devoted to special topics. Major review papers are particularly welcome. A further emphasis of the journal is the publication of a selected number of small workshops, which are at the forefront of their field. Peer Review Policy.

  2. Phase transitions in 2D materials

    This Review discusses the properties of phase transitions and defects in 2D materials, and examines technological applications and challenges in the study of 2D phase transitions.

  3. 376675 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on PHASE TRANSITIONS. Find methods information, sources, references or conduct a literature review on ...

  4. 112134 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on PHASE TRANSITION. Find methods information, sources, references or conduct a literature review on ...

  5. Phase Transitions in Materials

    The new edition of this popular textbook provides a fundamental approach to phase transformations and thermodynamics of materials. Explanations are emphasised at the level of atoms and electrons, and it comprehensively covers the classical topics from classical metallurgy to nanoscience and magnetic phase transitions.