- Reference Manager
- Simple TEXT file

People also looked at
Original research article, trends in deforestation as a response to management regimes and policy intervention in the hindu kush himalaya of pakistan.
- 1 College of Forestry, Beijing Forestry University, Beijing, China
- 2 Department of Forestry, Shaheed Benazir Bhutto University, Sheringal, Pakistan
- 3 Key Laboratory of Molecular Biology and Cellular Biology, College of Life Sciences, Ministry of Education, Hebei Normal University, Shijiazhuang, China
- 4 Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Ministry of Education, Hebei Normal University, Shijiazhuang, China
- 5 School of Sciences and Resources, Changan University, Xian, China
Based on the annual rate of deforestation as a forest conservation outcome, this study evaluated how effective is the existing forest management regime in controlling deforestation in the study area. Remote sensing data were used to measure the rate of deforestation. Furthermore, the existing forest management regime in the study area, as well as in other regions of the Himalayan and Karakoram ranges of Pakistan and the Himalayan temperate biome of India, China, Nepal, and Bhutan, was reviewed to compare deforestation. The results showed that, with regional-wise management regimes, the overall annual rate of deforestation was recorded much higher in the study area (0.8 yr −1 ) compared to the Himalayan and Karakoram ranges of Azad Kashmir (0.13% yr −1 ), Punjab (0.20% yr −1 ), and Gilgit Baltistan (0.31% yr −1 ). The cross-national and site-regional findings highlighted that lowest deforestation was associated with management regimes characterized by effective monitoring and law enforcement with the inclusion of conservation and community. Deforestation was higher in forest management regimes that aimed to maximize economic growth, unstable rights, weak law enforcement, and exclusion of conservation and community-based management/use. In conclusion, the best forest conservation outcomes are associated with management regimes that include conservation and community and stable and secure rights supported by high-ranking monitoring and law enforcement. Therefore, the inclusion of community and conservation supplemented with stable rights and high-rank monitoring and law enforcement into the existing management regimes is suggested.
Introduction
Forest carbon management and conservation are globally recognized as a potentially low-cost choice for climate change mitigation, with supplementary benefits for biodiversity, regulating the hydrological cycle and other multiple ecosystem services ( Canadell and Raupach, 2008 ; DeFries et al., 2010 ). The United Nations Framework Convention on Climate Change (UNFCCC) considers emission reduction from controlling deforestation and forest degradation as a cost-effective strategy ( DeFries et al., 2010 ). Such strategies will be effective in controlling deforestation only if they address the causes that promote deforestation such as underlying and controlling drivers. Deforestation has direct drivers (agriculture and settlement expansion), underlying drivers which include population growth and policies, and controlling factors such as urban expansion, local and cultural attitudes toward forests, and the scale of incentives for forest conservation ( Keenan et al., 2015 ). Understanding the drivers of deforestation and their monitoring is fundamental for developing policies that aim to change the current trends in forest management toward more climate-friendly and carbon-diversity–friendly outcomes ( Hosonuma et al., 2012 ; Ahmad et al., 2018 ).
Deforestation in developing countries has attached greater importance to policymakers in the last two decades. To control the rate of deforestation, numerous conservation strategies such as logging bans and regulations, payments for ecosystem services, and establishment of protected areas have been implemented worldwide ( Angelsen, 2010 ; Angelsen et al., 2012 ). Prohibitions on logging (partial or full ban) as a conservation tool have been implemented in many countries like India, Pakistan, Bangladesh, Thailand, China, Indonesia, and New Zealand, to control the rate of deforestation ( Brown et al., 2001 ; Tuynh and Phuong, 2001 ). The results of such measures are variable, with positive outcomes in certain countries (e.g., New Zealand, China, and Sri Lanka), while uncertain in countries like Pakistan, Bangladesh, and Thailand ( Zeb, 2019 ). Similarly, in general, establishing the protected areas limits the rate of deforestation in developing countries ( Bugayong, 2006 ; Fischer and project, 2010 ; Sarker et al., 2011 ; Halim, 2011). However, the fact is that protected areas consist of a small proportion of global forests, and in forests outside protected areas, rates of deforestation are widely different among countries ( Bertzky et al., 2012 ; Brandt et al., 2017 ; Hansen et al., 2013 ).
The forest management regimes and associated policies at the national and regional levels can have huge impacts on the rate of deforestation because they are underlying, not just direct driving forces ( Lambin and Geist, 2008 ; Lambin and Meyfroidt, 2010 ). Based on the management goals, forest management aims can be set different, including economic development, sustainable use and carbon-diversity conservation, and supporting local livelihoods ( Lambin and Geist, 2008 ). Under the implemented management regimes, the goals to be achieved are different regarding land-tenure and rights arrangements and exclusion or inclusion of conservation in management ( Brandt et al., 2017 ). However, the success or failure of the goals of management regimes can be affected by socio-economic, cultural, political, and institutional conditions, which might also limit management effectiveness. Excessive attention has been given to these conditions as factors of deforestation corresponding to national forest management itself as a driver ( Geist and Lambin, 2001 ; Bare et al., 2015 ).
Pakistan is a forest-deficit country (5% of its geographical area under forest) and has witnessed a higher deforestation rate ( Ahmad et al., 2018 ). According to different estimates, the annual rate of deforestation in the country varied between 0.7 and 2% ( FAO, 2011 ; FAO, 2015 ; Qamer et al., 2016 ). Of the total forest land, 67% of the forest in the country exists in the hilly area of Himalayan, Hindu Kush, and Karakoram ranges. The forest resources in the Hindu Kush Himalayan ranges were declared as protected forests in 1970, where the state owned and managed the forest; however, the local communities were entitled to different rights ( Qamer et al., 2016 ). Forest management in the study region has remained provincial responsibility mostly based on colonial laws. Under this formal legal management system, the local communities were restricted in forest management. In response to disastrous floods in 1992–1993, the government of Pakistan initiated some major reforms for the conservation and management of forests ( Yusuf, 2009 ; Fischer and project, 2010 ). Such reforms include a logging ban throughout the country, a Forestry Sector Master Plan (1992), the Sarhad provincial conservation strategy (1996), Hazara Community Participation Rules (1996–97), KP forest ordinance (2002), and their Community Participation Rules, 2004 ( Yusuf, 2009 ). The recent National Forest Policy (2015) also aims to expand protected areas ( MCC, 2015 ). Moreover, recently, the government of Pakistan launched the “Protected Areas Initiative” program for expanding PAs from 12 to 15% ( IUCN, 2020 ). Despite these major reforms, the current rate of deforestation in Pakistan is still much higher, which is attributed to the ineffective implementation of the above-mentioned reforms ( Ahmad et al., 2018 ; Zeb, 2019 ).
Deforestation and its direct drivers have been widely studied in Pakistan ( Qasim et al., 2011 ; Qamer et al., 2016 ; Ahmad et al., 2018 ; Mannan et al., 2018 ). Similarly, based on the local scale, few of the studies give some insights into the ban policy and legal and institutional reforms on deforestation ( Fischer and project, 2010 ; Yusuf, 2009 ; Zeb, 2019 ). However, the effect of the existing forest management regimes and their associated ban policies itself as a driver has not yet been evaluated, particularly in the protected forests of the Hindu Kush Himalayan ranges. As in these regions, the local communities claim ownership rights over the forests. Such rights are frequently contested between the state and local communities upon implementing reforms and policies. This study, for the first time in Pakistan, evaluated the effect of existing forest management regimes and their associated policies on the rate of deforestation. We used remote sensing data to assess the rate of deforestation in the study area. Similarly, we evaluated how cross-national management regimes across the Himalayan temperate biome (China, India, Nepal, Bhutan, and Myanmar) and site-regional management regimes in Pakistan are effective for forest conservation outcomes. We linked the difference in the rate of deforestation (as a conservation outcome) affected by management regimes focusing on the degree of decentralization and policy implementation, local political and socio-cultural scenarios, the scale of community participation in management, and the use of forests for economic growth versus sustainable management and conservation.
Materials and Methods
The study was carried out in the Hindu Kush Himalayan ranges of Malakand civil division (MKD) of the Khyber Pakhtunkhwa province, Pakistan ( Figures 1A,B ). The total land area of the region is 2.98 million hectares and extends between 34°9′ and 36°55′ in latitude and 72°10′ and 73°55′ in longitude ( KPBS, 2020 ). The elevation ranges from 450 to 7,782 m. The climate is sub-tropical to temperate. The average annual minimum and maximum temperatures vary from −6 to 40°C ( Mannan, 2009 ). The mean annual precipitation varies between 500 and 1,600 mm. The forests extend over an area of 0.8 million ha (27%). The major forest types in the area include sub-tropical broadleaved semi-evergreen forests, sub-tropical Chir forests, moist temperate forests, dry temperate forests, and sub-alpine forests. The major conifer tree species of the area include Cedrus deodara , Pinus wallichiana , Pinus gerardiana , Pinus roxburghii , Abies pindrow , Picea smithiana , Taxux baccata , and the major broadleaved species including Quercus incana , Olea ferruginea , Juglans regia , Morus alba , Betula utilis , Populus ciliata , and Acacia modesta .

FIGURE 1 . (A) . Pakistan image. (B) . Study area image.
Assessment of the Rate of Deforestation
The data regarding the forest cover change in the study area were obtained from the Landsat images of 2009 and 2020 from the United States Geological Survey ( https://www.usgs.gov/ ). Two maps for the years 2009 and 2020 were scanned and processed in the processing software. The GPS (Global Positioning System) and area topographic sheet were used for geometric correction of the image. The radiometric and atmospheric corrections were performed in FLASH and radiometric calibration tools available in ENVI 5.1. For the classification of the study area into different classes such as forest, agricultural land, barren land, built area, glacier, and water bodies, the satellite data were examined, and pre-pixel signatures were assigned. Post-classification smoothing and confusion matrix ground truth were used to improve the quality of classification and image accuracy. The accuracy of the classified images was also assessed through kappa statistics. We used a supervised maximum likelihood algorithm for the spectral classification of the images. For the forest cover change detection, multi-data post-classification change detection techniques were performed ( Ahmad et al., 2018 ; Mannan et al., 2019 ). The average rate of deforestation was calculated ( Puyravaud, 2003 ).
Characteristics of Forest Management Regimes and Their Conservation Outcomes
The available database of Forestry Statistics of Pakistan as well as other documents was sourced to determine the proportion of forest area under five categories: state-owned forests, reserved forests, protected forests, Guzara forests, and communal forests in Pakistan ( Khan, 2004 ; Yusuf, 2009 ; CCF, 2011 ; PBS, 2017 ). The forest management regimes in each category were evaluated. To characterize the forest management regimes in the study area, we also reviewed the management plan documents ( Saddozi, 1995 ; Muhammad, 2000 ; Mannan, 2001 ; Mannan, 2002 ; Usman, 2017 ). Similarly, the management regimes in the Himalayan temperate biome (China, India, Myanmar, Nepal, and Bhutan) were also reviewed for comparison ( Brandt et al., 2017 ).
The annual rate of deforestation was our measure of forest conservation outcome under the existing forest management regimes. The annual rate of deforestation with associated management regimes in the study area was calculated from satellite images (2009–2020). For deforestation comparison concerning management regimes, the annual rate of deforestation in the Himalayan and Karakoram regions of Pakistan was sourced from Mannan et al. (2019 ), Qamer et al. (2016 ), and Qasim et al. (2011 ). Furthermore, to compare the annual rate of deforestation with the Himalayan temperate biome, the annual rate of deforestation in China, India, Myanmar, Nepal, and Bhutan under the respective forest management regimes was sourced from Brandt et al. (2017 ).
Results and Discussions
Rate of deforestation.
The results showing the annual rate of deforestation in the region are given in Figures 2 – 4 . Our results showed that, in 2009, forest covered an area of 381,551 ha, while it was 349,228 ha in the year 2020. Over this period (2009–2020), a substantial decrease occurred in the forest area. Overall, 32,323 ha of forests were lost and the annual rate of deforestation recorded was 2,938 ha (0.8%). This annual rate of deforestation was much higher than the estimated rate of deforestation in the Himalayan (Murree and Islamabad, 0.13–0.20%) and Karakoram (Gilgit, 0.31%) ranges of Pakistan reported by Qamar et al. (2012) and Mannan et al. (2019) .

FIGURE 2 . Land use map of the year 2009.

FIGURE 3 . Land use map of the year 2020.

FIGURE 4 . Change in the forest area from 2009 to 2020.
Categories of Forest and Characteristics of Forest Management Regimes in the Hilly Areas of Pakistan
In the hilly area of Pakistan, there are six different categories, including state forests, reserved forests, protected forests, Guzara forests, communal forests, and private plantations. Details of the different categories of forests with respective management regimes are given in Table 1 . The state forests in Pakistan are found in Azad Jammu and Kashmir (AJK). In these forests, the local communities hold the rights to grazing, grass cutting, and timber collection for house repairs. Similarly, in communities living within 4.8 km 2 of the forest’s boundaries, rights are granted for agriculture and domestic uses to landowners and tenant farmers; however, such concessions cannot be sold or bartered. Reserved forests are mostly found in the foothills of Himalaya in the Punjab (PUN) province and the Hazara Division of the Khyber Pakhtunkhwa (KPK) province. In the reserved forests of Punjab, rights and concessions are rare. In KPK, under KP forest ordinance 2002, rights and concessions such as grazing can be admitted by the FSB (Forest Settlement Board). However, no rights can be acquired except by succession. Similarly, no rights can be transferred by mortgage, sale, lease, or grant.

Table 1 . Categories of forests and management characteristics in the hilly areas of Pakistan (000 ha).
Guzara forests in the province of Punjab are located in Murree and Rawalpindi. The ownership of these forests is vested to the local community either as joint property or as individual property. Timber from the dead, dry windfall, and uprooted trees are sold through public auctions. Of the total revenue, 70% of the revenue goes to the village Guzara fund in the case of joint or communal forest property and 30% to the central Guzara fund and staff welfare, whereas in the case of individual property, 70% of the revenue goes to the landowner and the rest goes to the central Guzara fund and staff welfare. In the KPK province, the Guzara forests are located in Haripur, Abbottabad, Kohistan, Mansehra, and Battagram of the Hazara civil division. The KPK Forest Department regulates forests in these regions. The major rights in Guzara forests include timber for domestic use, shares in a timber sale, collection of fuel wood, and fodder for livestock, grazing, and a seignorage fee. The owners can cut from 1 to 3 trees for domestic uses on a specific permit issued by the forest department; however, the tenants and the landless communities do not have the right to cut trees.
The communal forests are located in the Karakoram ranges of Gilgit Baltistan. In these forests, the land tenure system is clear. The government respects all the property rights of the local communities and manages the forests in the best interest of owners. The tree marking and harvesting is regulated by the forest department, and the forest department obtained a fixed royalty which is based on the species type and harvested volume. Private plantations in KPK are forests on land in which the landowner has an undisputed right of ownership. The harvesting is either carried out by the owner or regulated by the forest department.
Protected forests are found in the Hindu Kush Himalayan ranges in the Malakand civil division of the KPK province (study area). These forests are inherited from the princely states of Dir, Chitral, and Swat and were declared as protected forests in the 1970s. The state owned and managed the forests, and the local people are entitled to different rights and concessions. These rights include out of commercial sale proceeds, 60–80% share, to local people as “Royalty”, right of cutting dry branches and trees for firewood, right of getting timber for domestic construction, right of grazing, right of collecting non-timber forest products, and right of collecting a fee from the nomadic communities ( Ahmad et al., 2018 ). In the study area, the management of forests also varies by sub-regions. Forests in Chitral and Swat regions are 70 and 65% protected, respectively, while in the Dir region, about 40% of forests are protected forests. In Chitral and Swat regions, 28 and 35% of forests are private plantation, respectively. In the Dir region, about 16% of forests are communal, and 12% are private plantation.
Differences in the Rate of Deforestation With Respect to Forest Management Regimes
The results of differences in the rate of deforestation in different areas in Table 2 highlighted the lowest rate of deforestation in AJK (Himalayan ranges), which is 0.13% yr −1 ( Qamer et al., 2016 ). The highest annual rate of deforestation (0.8%) was recorded for the Hindu Kush Himalayan ranges of Malakand civil division ( Table 2 ). In Gilgit Baltistan (Karakoram ranges), the annual rate of deforestation was estimated at 0.31%, while in Islamabad and Murree, the annual deforestation rate was recorded at 0.20% ( Qamer et al., 2016 ; Mannan et al., 2019 ). The results highlighted a substantial difference in the rate of deforestation in different regions under respective forest management regimes. The results indicated that state forests in AJK with associated management regimes have the most positive forest conservation outcomes in deforestation, followed by Murree and Islamabad. Effective monitoring and law enforcement and the inclusion of conservation and protected areas in AJK resulted in a lower deforestation rate. Similarly, in Murree and Islamabad, a better level of monitoring and enforcement and the inclusion of conservation (protected areas) and stable community rights (Guzara forests of Murree) resulted in effective conservation outcomes. Although the government admitted all the ownership rights in GB, the relatively high rate of deforestation compared to that in AJK and Murree/Islamabad might be the result of weak law enforcement and the lack of experts and technical staff ( Tan, 2006 ).

TABLE 2 . Differences in the rate of deforestation in different hilly areas of Pakistan.
The existing management regimes in the study area (Hindu Kush ranges of MKD) associated with weak law enforcement and policy implementation community and conservation exclusion, unstable and insecure land tenure rights, and continuous government’s bureaucratic interference, illegal cutting are the major factors of the high rate of deforestation ( Tan, 2006 ; Yusuf, 2009 ). The highest rate of deforestation in the study area may also be attributed to the logging ban policy. The rate of deforestation was recorded higher after the logging ban in 1992 as compared to that before the logging ban ( Qasim et al., 2011 ; Zeb, 2019 ). Despite the logging ban, the increase rate of deforestation reflects the non-effectiveness of logging ban policy in the area under the respective management regime. The ban policy shifted the pattern of deforestation from a higher elevation to a lower elevation. This shifting pattern of deforestation during the post-ban period might be attributed to the closure of temperate and sub-alpine (coniferous) forests for communities’ rights ( Ahmad et al., 2018 ; Zeb, 2019 ). Before the ban, the local people were mostly dependent on the coniferous forests for timber and fuelwood, and oak and broadleaved semi-evergreen forests were used for livestock fodder and fuelwood. After banning, biotic pressure on the lower elevation forest zones increases in terms of grazing, fodder, fuelwood, and timber extraction. The present findings are consistent with the results of Alix-Garcia et al. (2005 ), Palmer and Engel (2009 ), Elsen et al. (2018 ), and Warman and Nelson (2016 ). They observed an increasing trend in the rate of deforestation under the logging bans and management regulations.
At sub-regions, the rate of deforestation rate varies. Swat regions have the highest rate of deforestation (1.4%), followed by Chitral (0.71%), while the Dir region has the lowest deforestation rate of 0.4% ( Qasim et al., 2011 ; Qamer et al., 2012 ; Ahmad and Nizami, 2015 ; Ullah et al., 2016 ; Ahmad et al., 2018 ; Zeb, 2019 ). The sub-regional statistics revealed that formal and informal community forest management and rights play an important role in forest management. In Dir regions, about 16% of forests belong to local communities. Additionally, in Dir regions, the local communities are actively involved in joint forest management (JFM), which was introduced by the KP government in 2004. In Swat regions, the absence of communal forests and inactive JFM resulted in a higher rate of deforestation. Though in Chitral communal forests are not existing, the lower rate of deforestation might be attributed to active JFM compared to Swat.
We further compare the current rate of deforestation in our study area with the rate of deforestation in China, India, Nepal, Bhutan, and Myanmar in the Himalayan temperate biome during 2000 and 2014 ( Brandt et al., 2017 ). The characteristics of national forest management in respective countries and the rate of deforestation are given in Table 3 . The table results demonstrate that countries with high conservation priorities and community-based management such as Nepal and Bhutan had lower deforestation rates than other countries. Both countries have a larger forest area protected with a high level of monitoring and law enforcement in Nepal and centralized management in Bhutan. In contrast, priorities of China, India, and Myanmar lack conservation in terms of communities’ benefits. Also, Myanmar and China’s forest management regimes are development and profit–oriented. Moreover, China, entitled with unstable and inconsistent rights to communities ( Woods, 2015 ; Yang et al., 2015 ), and Myanmar, have insufficient monitoring mechanisms ( Sikor et al., 2013 ).

TABLE 3 . Characteristics of the national forest management regime and the rate of deforestation.
In the study area, the current forest management regimes resemble Myanmar in terms of commercial exploitation and weak law enforcement and China in terms of unstable and inconsistent rights. The coniferous and sub-alpine forests are declared as protected forests owned and managed by the state with multiple rights and concessions to local communities. Furthermore, the sub-tropical oak scrub forests and sub-tropical broadleaved forests belong to local communities, managed under traditional management. The community-based management in this forest resembles Nepal’s forest management regimes up to some extent but lacks a high level of monitoring, law enforcement, and management capabilities. Furthermore, the imposition of the logging ban policy in 1993 shifted the pattern of forest land conversion. Before the ban, deforestation was mainly in the sub-alpine and temperate forests. However, during the post-ban period, deforestation shifted to sub-tropical forests, most likely for fuel wood, livestock grazing, and shifting cultivation attributed to population increase. Similarly, in protected forests, the partial protection of forests attributed to weak law enforcement, insufficient monitoring, and community exclusion encourages the timber mafia for illegal harvesting ( Ahmad et al., 2018 ; Zeb, 2019 ).
In summary, the present results pinpoint that, despite various conservation measures such as the Sarhad provincial conservation strategy (1996), KP forest ordinance (2002), and their Community Participation Rules, 2004, and most recently, the BTTAP (Billion Tree Tsunami Afforestation Project, 2014–15), the high rate of deforestation is reflecting the non-effectiveness of existing forest management regimes and their logging ban policy. Furthermore, the government of Pakistan recently launchpad a Ten Billion Tree Tsunami Program (TBTTP, 2019) throughout the country to improve and enhance forest cover. To achieve the goals of the TBTTP, the existing forest management regimes need major amendment. In this regard, we suggest adopting Nepal and Bhutan’s management regime models with local participation in forest management and decision-making supported by high-level effective monitoring and law enforcement. Although the concept of joint forest management was introduced in 2004, however, inconsistent policies, lack of quality governance and monitoring, and unstable land rights and responsibilities are the major causes of their non-effectiveness. In the absence of partial or incomplete power transfer, decentralization may lead to unexpected outcomes ( Ribot et al., 2006 ). Additionally, establishing protected areas (PAs) might help control deforestation globally, as countries with larger PAs had lower deforestation rates ( Brandt et al., 2017 ).
Conclusion and Recommendations
The results suggest that, under existing forest management regimes and their associated ban policy, the rate of deforestation has increased since the ban was imposed. Institutional neglect, weak law enforcement, and policy implementation, the conflicts between government and local on ownership rights through bureaucratic interference, unstable land tenure rights, lack of protected areas, and exclusion of conservation and community-based management are the major factors of non-effectiveness of the forest management regimes in the area. Therefore, we suggest the inclusion of conservation and community-based management, increasing managerial skills of local people, stable and secure rights, and high-rank monitoring and law enforcement into the existing management regimes. Furthermore, protected areas can potentially reduce deforestation and improve carbon-diversity; therefore, establishing more protected areas in the regions will be an effective strategy for forest carbon and diversity conservation.

Data Availability Statement
The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.
Author Contributions
AA and SA conceptualized the research idea, performed the methodology and analysis, and wrote the original draft. GN critically revised the manuscript and edited the paper. Q-JL supervised the work. NI was involved in GIS and remote sensing analysis and image preparation. XL was involved in funding acquisition.
Conflict of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s Note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Acknowledgments
We are thankful to the Ministry of Science and Technology of the People’s Republic of China (Research and Application of Key Techniques on Endangered Species Conservation and Prediction of Forest Fire and Pests in Response to Climate Change; 2013BAC09B00) for supporting this study.
Ahmad, A., Liu, Q.-J., Nizami, S. M., Mannan, A., and Saeed, S. (2018). Carbon Emission from Deforestation, forest Degradation and wood Harvest in the Temperate Region of Hindukush Himalaya, Pakistan between 1994 and 2016. Land Use Policy 78, 781–790. doi:10.1016/j.landusepol.2018.07.009
CrossRef Full Text | Google Scholar
Ahmad, A., and Nizami, S. M. (2015). Carbon Stocks of Different Land Uses in the Kumrat valley, Hindu Kush Region of Pakistan. J. For. Res. 26, 57–64. doi:10.1007/s11676-014-0008-6
Alix-Garcia, J., Janvry, A. d., and Sadoulet, E. (2005). A Tale of Two Communities: Explaining Deforestation in Mexico. World Dev. 33 (2), 219–235. doi:10.1016/j.worlddev.2004.07.010
Angelsen, A., Brockhaus, M., Sunderlin, W. D., and Verchot, L. V. (2012). Analysing REDD+: Challenges and Choices . Cifor .
Google Scholar
Angelsen, A. (2010). Policies for Reduced Deforestation and Their Impact on Agricultural Production, Proc. Natl. Acad. Sci. 107, 19639–19644.
PubMed Abstract | CrossRef Full Text | Google Scholar
Baohua, Z. (2006). “Changes and Trends in forest Tenure and Institutional Arrangements for Collective forest Resources in Yunnan provinceForestry Policy and Institutional Working Paper” in 2006: Understanding forest Tenure in South and Southeast Asia (China: FAO ).
Bare, M., Kauffman, C., and Miller, D. C. (2015). Assessing the Impact of International Conservation Aid on Deforestation in Sub-saharan Africa. Environ. Res. Lett. 10 (12), 125010. doi:10.1088/1748-9326/10/12/125010
Bertzky, B., Corrigan, C., Kemsey, J., Kenney, S., Ravilious, C., Besançon, C., et al. (2012). “Protected Planet Report 2012: Tracking Progress towards Global Targets for Protected Areas,” in Protected Planet Report 2012: Tracking Progress towards Global Targets for Protected Areas .
Bhattarai, M., and Hammig, M. (2004). Governance, Economic Policy, and the Environmental Kuznets Curve for Natural Tropical Forests. Envir. Dev. Econ. 9, 367–382. doi:10.1017/s1355770x03001293
Brandt, J. S., Allendorf, T., Radeloff, V., and Brooks, J. (2017). Effects of National forest‐management Regimes on Unprotected Forests of the Himalaya. Conservation Biol. 31, 1271–1282. doi:10.1111/cobi.12927
Brown, C., Durst, P. B., and Enters, T. (2001). “Forests Out of Bounds: Impacts and Effectiveness of Logging Bans in Natural Forests in Asia-Pacific,” in Executive Summary .
Bugayong, L. A. (2006). “Effectiveness of Logging Ban Policies in Protecting the Remaining Natural Forests of the Philippines,” in Proceedings of the 2006 Berlin Conference on Human Dimensions of Global Environmental Change—Resource Policies: Effectiveness Efficiency, and Equity . Berlin, Germany . Freie University . Paper presented at the.
Canadell, J. G., and Raupach, M. R. (2008). Managing Forests for Climate Change Mitigation. Science 320 (5882), 1456–1457. doi:10.1126/science.1155458
CCF (2011). Office of the Chief Conservator of Forest . Peshawar, Pakistan: Khyber Pakhtunkhwa .
DeFries, R. S., Rudel, T., Uriarte, M., and Hansen, M. (2010). Deforestation Driven by Urban Population Growth and Agricultural Trade in the Twenty-First century. Nat. Geosci 3, 178–181. doi:10.1038/ngeo756
Elsen, P. R., Monahan, W. B., and Merenlender, A. M. (2018). Global Patterns of protection of Elevational Gradients in Mountain Ranges. Proc. Natl. Acad. Sci. USA 115 (23), 6004–6009. doi:10.1073/pnas.1720141115
FAO (2011). Global Forest Resources Assessment 2000 . Rome, Italy: Food and Agriculture Organization of the United Nations .
FAO (2015). Global Forest Resources Assessment.FAO Forestry Paper No. 1⁄⁄ . Rome: UN Food and Agriculture Organization .
Fischer and project (2010). Study on Timber Harvesting Ban in NWFP . Pakistan: Intercooperation Pakistan .
Geist, H. J., and Lambin, E. F. (2001). What Drives Tropical Deforestation. LUCC Rep. Ser. 4 116.
Hansen, M., Potapov, P., Moore, R., Hancher, M., Turubanova, S., Tyukavina, A., et al. (2013). Hansen/UMD/Google/USGS/NASA Tree Cover Loss and Gain Area . University of MarylandGlobal Forest Watch on March7 . Google, USGS, and NASA.Accessed through 2015 . ,
Hosonuma, N., Herold, M., de Sy, V., de Fries, R. S., Brockhaus, M., Verchot, L., et al. (2012).An Assessment of Deforestation and forest Degradation Drivers in Developing Countries. doi:10.1088/1748-9326/7/4/044009
IUCN (2020). Pakistan’s ‘Protected Areas Initiative .
Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., and Lindquist, E. (2015). Dynamics of Global forest Area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manage. 352, 9–20. doi:10.1016/j.foreco.2015.06.014
Khan, S. (2004). Forestry Statistics of Pakistan . Pakistan Forest Institute .
KPBS (2020). Bureau of Statistics Khyber Pakhtunkhwa . Pakistan .
Lambin, E. F., and Geist, H. J. (2008). Land-use and Land-Cover Change: Local Processes and Global Impacts . Springer Science & Business Media .
Lambin, E. F., and Meyfroidt, P. (2010). Land Use Transitions: Socio-Ecological Feedback versus Socio-Economic Change. Land Use Policy 27, 108–118. doi:10.1016/j.landusepol.2009.09.003
Lin, H. (2005). Community Forestry Initiatives in Myanmar: an Analysis from a Social Perspective. Int. Forest. Rev. 7, 27–36. doi:10.1505/ifor.7.1.27.64154
Mannan, A. (2001). Resource Management Plan for Warrai Forests of Dir Forest division 2001-2015 .
Mannan, A., Liu, J., Zhongke, F., Khan, T. U., Saeed, S., Mukete, B., et al. (2019). Application of Land-Use/land Cover Changes in Monitoring and Projecting forest Biomass Carbon Loss in Pakistan. Glob. Ecol. Conservation 17, e00535. doi:10.1016/j.gecco.2019.e00535
Mannan, A. (2009). “Operational Plan for the Protected Forests of Chitral forest Division K. P. F. Department,” in Forestry Planning and Monitoring circle Peshwar ( Pakistan .
Mannan, A. (2002). Working Plan for. For Dir Uncontrolled Forests of Dir Forest division 2001-2015 .
Mannan, A., Zhongke, F., Ahmad, A., Liu, J., Saeed, S., and Mukete, B. (2018). Carbon Dynamic Shifts with Land Use Change in Margallah Hills National Park, Islamabad (Pakistan) from 1990 to 2017. Appl. Ecol. Env. Res. 16, 3197–3214. doi:10.15666/aeer/1603_31973214
MCC (2015). National Forest Policy . Govt of Pakistan: Ministry of Climate Change .
Muhammad, Y. K. (2000). Resource Management Plan for Alpuri Forest Division (2000-2015) .
Ojha, H., Persha, L., and Chhatre, A. (2009). Community Forestry in Nepal: a Policy Innovation for Local Livelihoods. Proven Successes Agric. Dev. 123.
Palmer, C., and Engel, S. (2009). Avoided Deforestation: Prospects for Mitigating Climate Change . Routledge .
PBS (2017). Statistics Division of the Government of Pakistan . Islamabad .
Puyravaud, J.-P. (2003). Standardizing the Calculation of the Annual Rate of Deforestation. For. Ecol. Manage. 177, 593–596. doi:10.1016/s0378-1127(02)00335-3
Qamer, F. M., Abbas, S., Saleem, R., Shehzad, K., Ali, H., and Gilani, H. (2012). Forest Cover Change Assessment in Conflict-Affected Areas of Northwest Pakistan: The Case of Swat and Shangla Districts. J. Mt. Sci. 9, 297–306. doi:10.1007/s11629-009-2319-1
Qamer, F., Shehzad, K., Abbas, S., Murthy, M., Xi, C., Gilani, H., et al. (2016). Mapping Deforestation and Forest Degradation Patterns in Western Himalaya, Pakistan. Remote Sensing 8 385. doi:10.3390/rs8050385
Qasim, M., Hubacek, K., Termansen, M., and Khan, A. (2011). Spatial and Temporal Dynamics of Land Use Pattern in District Swat, Hindu Kush Himalayan Region of Pakistan. Appl. Geogr. 31, 820–828. doi:10.1016/j.apgeog.2010.08.008
Ribot, J. C., Agrawal, A., and Larson, A. M. (2006). Recentralizing while Decentralizing: How National Governments Reappropriate forest Resources. World Dev. 34 (11), 1864–1886. doi:10.1016/j.worlddev.2005.11.020
Saddozi, A. Q. K. (1995). Revised Working Plan for Dir Kohistan Forest of Dir Forest Division (1995-2015) .
Sarker, S. K., Deb, J. C., and Halim, M. A. (2011). A Diagnosis of Existing Logging Bans in Bangladesh. Int. For. Rev. 13 (4), 461–475. doi:10.1505/146554811798811344
Sikor, T., Auld, G., Bebbington, A. J., Benjaminsen, T. A., Gentry, B. S., Hunsberger, C., et al. (2013). Global Land Governance: from Territory to Flow? Curr. Opin. Environ. Sustainability 5 (5), 522–527. doi:10.1016/j.cosust.2013.06.006
Tan, N. Q. (2006). “Trends in forest Ownership, forest Resources Tenure and Institutional Arrangements: Are They Contributing to Better forest Management and Poverty Reduction? Case Study from Vietnam,” in Understanding Forest Tenure in South and Southeast Asia–Forestry Policy and Institutions , 355–407.
Tuynh, V. H., and Phuong, P. X. (2001). Impacts and Effectiveness of Logging Bans in Natural Forests .
Ullah, S., Farooq, M., Shafique, M., Siyab, M. A., Kareem, F., and Dees, M. (2016). Spatial Assessment of forest Cover and Land-Use Changes in the Hindu-Kush Mountain Ranges of Northern Pakistan. J. Mt. Sci. 13 (7), 1229–1237. doi:10.1007/s11629-015-3456-3
Usman, G. (2017). Working Plan for Sawt Forest Division (2017-2027) .
Wani, B. A., Shah, H., and Khan, S. (2004). Forestry Statistics of Pakistan . Pakistan Forest Institute .
Warman, R. D., and Nelson, R. A. (2016). Forest Conservation, wood Production Intensification and Leakage: An Australian Case. Land use policy 52, 353–362. doi:10.1016/j.landusepol.2015.12.020
Woods, K. (2015). Commercial Agriculture Expansion in Myanmar: Links to Deforestation, Conversion Timber, and Land Conflicts. For. Trends .
Yang, B., Busch, J., Zhang, L., Ran, J., Gu, X., Zhang, W., et al. (2015). China's Collective forest Tenure Reform and the Future of the Giant Panda. Conservation Lett. 8 (4), 251–261. doi:10.1111/conl.12143
Yusuf, M. (2009). Legal and Institutional Dynamics of forest Management in Pakistan. Mcgill Int'l J. Sust.Dev. L. &Pol'y 5, 45.
Zackey, J. (2007). Peasant Perspectives on Deforestation in Southwest China. Mountain Res. Dev. 27, 153–161. doi:10.1659/mrd.0837
Zeb, A. (2019). Spatial and Temporal Trends of forest Cover as a Response to Policy Interventions in the District Chitral, Pakistan, Appl. Geogr. , 102, 39–46. doi:10.1016/j.apgeog.2018.12.002
Keywords: forest management, ban policies, deforestation, conservation outcomes, Himalaya
Citation: Ahmad A, Ahmad S, Nabi G, Liu Q-, Islam N and Luan X (2022) Trends in Deforestation as a Response to Management Regimes and Policy Intervention in the Hindu Kush Himalaya of Pakistan. Front. Environ. Sci. 10:810806. doi: 10.3389/fenvs.2022.810806
Received: 07 November 2021; Accepted: 03 February 2022; Published: 02 March 2022.
Reviewed by:
Copyright © 2022 Ahmad, Ahmad, Nabi, Liu, Islam and Luan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Xiaofeng Luan, [email protected]
† These authors have contributed equally to this work and share first authorship
Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser .
Enter the email address you signed up with and we'll email you a reset link.
- We're Hiring!
- Help Center

Micro-level Study of Deforestation in Capital Territory of Pakistan

2018, Journal of Natural Sciences Research
Wood products are better than artificial material, products when evaluating with environmental concerns, but our world's forests cannot be compromised for these products. As increasing demand for wood product leads to deforestation, more rapid tree cutting even without permits and cause threat to human health and wildlife. The current study estimates the percentage of wood cutting and gives a comparison of green cover for a period (2009-2016) in Margalla Hills National Park (MHNP), Islamabad. Scale and aftermath of wood harvesting is a major area of concern. The wood consumption by villagers of MHNP, the role of authorities and communities to safeguard MHNP and its effects are also studied by incorporating villagers and forest guards' point of view through questionnaire and interviews respectively. Forest cover of MHNP is reduced at high percentage due to deforestation and different land use pattern. It needs to be monitored and taken as the responsibility of government and public to protect forests.
Related Papers
Pakistan Journal of Scientific & Industrial Research Series A: Physical Sciences
Wood products are better than artificial material, products when evaluating with environmental concerns, but our World's forests cannot be compromised for these products. As the increasing demand for wood product leads to deforestation, more rapid tree cutting even without permits and cause threat to human health and wildlife. The current study estimates the percentage of wood cutting and gives a comparison of green cover for a period (2009-2016) in Margalla Hills National Park (MHNP), Islamabad. Scale and after math of wood harvesting is a major area of concern. The wood consumption by villagers of MHNP, the role of authorities and communities to safeguard MHNP and its effects are also studied by incorporating villagers and forest guards' point of view through questionnaire and interviews, respectively. The forest cover of MHNP is reduced at high percentage due to deforestation and different land use pattern. It needs to be monitored and taken as the responsibility of the g...

Journal of Natural Sciences Research
Samuel Abanyie
Gilbert Obwoyere
Over 2.6 billion people of the world’s population prepare their food and heat their homes with coal and the traditional biomass fuel. Wood fuel continues to be used as a major source of energy without a replacement program and is partly the cause of wide spread deforestation at an alarming rate of about 13 million hectares per year. Crucial to slowing the loss of the vegetation is promoting alternative sources of energy and/or using fuel efficient devices. This study examined the efficiency of cooking devices and the wood fuel consumption patterns among the rural population sampled from Kenya in Likia village near Njoro, so as to determine the more efficient cooking device and corresponding wood fuel. Initially, a survey was carried out capturing baseline data on the wood fuel utilization patterns and Split Plot in Randomized Complete Block Experimental Design used to select an efficient heating device where heating devices were a sub plot factor and the sources of energy as main pl...
Martha Konje , AGEVI HUMPHREY
Prunus africana is a multipurpose medicinal tree of worldwide fame in treatment of benign prostate cancer. However, the wild collection is no-longer sustainable due to overharvesting. In order to conserve the species, there is need to determine the status of the local community knowledge on uses and conservation measures to develop protocols for sustainable utilization and avert extinction of the species. Stratified random sampling was used to interview and administer questionnaires to 188 households and herbalists within a buffer zone of 1 km in South Nandi Forest. The study found that 99% of the locals were aware of the P. africana tree. Majority (82%) agreed that P. africana population was decreasing both in the forests and farmlands. Almost all parts of the P. africana were utilized for different purposes. Majority of the locals (66%) acquire P. africana products from the forest. Closer proximity to the forest and uncontrolled harvesting provides easier accessibility to P. africana for households use. The study concluded that P. africana is an important multipurpose medicinal tree to the local community and recommends enhanced planting and protection within and outside the forests to ensure posterity.
Journal of Natural …
Nehemia Kiprutto
nat prempeh
Joseph Hitimana
Mustefa Sultan Dalu
The study on the contributions of protected area for local community livelihood was carried out in Senkele Swayne's Hartebeest sanctuary (SSHS). Primary data were collected through questionnaire, Key Informant Interview (KII), Focus Group Discussion (FGD) and direct field observation. Secondary data were collected through review of literature. Out of the 32 rural kebeles found in the Siraro district, four kebeles surrounding the sanctuary were purposively selected for the study. Primary data collection involved 151 households for questionnaire survey, 40 discussants for FGD and 12 interviewees for KII. Results of survey point out there were open access resource use and illegal activities particularly illegal hunting in the Senkele area before it's established as a Sanctuary. However, illegal hunting is very rare since the establishment of Sanctuary. It rarely happens when problem animals damage local community property or cause injury to human. The majority of sample households 41.06% were benefited a lot of resources from the sanctuary which includes fire wood, thatching the grass, grazing and collecting medicinal plants. Likewise, about 25.83% of respondents were benefited by thatching grass and grazing inside the sanctuary only. In addition, 11.92% benefited only throughout thatching grass from the area while rest few percent 3.31% privileged by collecting fire wood and livestock grazing. Currently Wildlife is facing malnutrition due to overgrazing by livestock and wildlife behavioral change is observed due to high human disturbance. Regarding to managing current destruction of the sanctuary, 27.2 % of respondents supposed that, the sanctuary could be managed through ensuring protection and conservation while 13.9%, 11.9% and 11.3% respondents stated sanctuary destruction could be managed through benefit sharing, participatory wildlife management and controlling grazing respectively. Some other 10.6% and 9.9% of the respondents said the sanctuary destruction can be managed through awareness creation and controlling illegal activities. Providing alternative means of livelihood like Ecotourism and livelihood diversification for local community is highly recommended.
Alex Mensah
The increased rate of deforestation and forest degradation in developing tropical countries like Ghana, necessitated massive afforestation and reforestation as the approach for mitigating this menace with mostly short rotational tree crops like Tectona grandis (teak). Teak poles have been noted worldwide for their durability especially for electrification projects. However, its usage for electrification projects in Ghana has attracted immense attention and concern in Ghana primarily because of massive demand but frequent rejection of the poles due to unsuitable crown collar diameter and length of the tree required for electric poles. Currently, the relationship between the diameters at breast height, collar diameter and height-parameters that can be adopted for easy determination of crown collar diameter on field has not been well established in Ghana. This study was carried out to determine the relationships between and among diameter at breast height, height and crown collar diameter and diameter at breast height, height and crown collar diameter of teak in the dry semi-deciduous forest zone of Ghana to ease the determination of crown collar diameter to avoid its waste due to rejection. The study was carried out in compartment 5 of Chirimfa Forest Reserve. Diameter at breast height, total height and crown collar diameter variables were measured on hundred (100) felled trees. Regression analysis performed at a confidence level of 95% revealed no significant relationship (R 2 = 0.00, p > 0.05) between diameter at breast height and total height. However, significant relationship (R 2 = 73.40, p < 0.05) was found between crown collar diameter and diameter at breast height. The significant relationship (R 2 = 76.60, p < 0.05) among crown collar diameter, diameter at breast height and height as indicated by the model CD (cm) = 0.6625DBH (cm) – 0.563H (m) + 3.83, indicates that the appropriate determination of crown collar diameter of teak is a function of height and DBH growth. However, relationship between DBH and collar diameter was the strongest and suggest the DBH as the most important determining parameter for correlating Collar diameter of teak trees in the dry semi-deciduous forest zone of Ghana The study has thus provided a baseline equation that could be used to predict and determine teak trees crown collar diameters with diameter at breast heights in Ghana and also for further exploration for better predictions. 1.0 Introduction The degree of deforestation and forest degradation is more swift and vast in developing tropical countries (FAO, 2005) and these loss of the natural forests have been counteracted by the rapid increase in degraded forestland allocated to plantation establishment (FAO, 2007). In Ghana, the approach for mitigating the ever increasing deforestation has been massive afforestation and reforestation by Government and the private sector with mostly short rotational trees like Tectona grandis (teak). This has led to the establishment of large plantation areas both in Forest reserves and off-reserves with teak trees. Presently, teak is the most important plantation species in Ghana in terms of the areas planted and the value of its wood products. In 2010, almost 50,000m 3 of teak wood was exported in the form of air and kiln-dried lumber, poles and billet (Ghana Forestry Commission, 2011). An increase in teak plantations occurred following a five-year Rural Afforestation Programme in 1989 under the erstwhile Ghana Forestry Department, which saw a boost in teak planting through the establishment of new plantations and small-scale community woodlots in Northern Ghana. Apart from electric and telephone transmission poles, teak is also valued by small-scale farmers and local communities particularly in Northern Ghana as poles for construction, fencing, rafters, fuelwood, stakes and wind breaks. Teak wood has been noted worldwide for its durability and suitability to be used as electric and telephone poles but unfortunately, this usage for electrification poles is faced with wanton economic and ecological waste here in Ghana. This is due to the frequent rejection of the wood due to smaller collar diameter and length of the wood. This has subsequently led to the waste of large quantities of teak which are primarily deemed for transmission poles. Currently, no relationship between the diameters at breast height, collar diameter and height of teak has been established in the dry semi-deciduous forest zone and in Ghana as a whole. Based on the above problem, there is the need to devise a mechanism to determine with minimal errors,
Afrodet Saleh
RELATED PAPERS
Falemara-Williams Charles
Woody Species Diversity, Structure and Regeneration Status in Weiramba Forest of Amhara Region, Ethiopia
Zelalem Teshager
Mesfin Admassu
Alexander Decker
Demeke Asmamaw
Sylvester Mathias
Urgessa T Bekabil
Dipankar Ghose
ABIMBOLA OGUNWUSI
David Langat
David Langat , Joshua Cheboiwo
Journal of Threatened Taxa
faraz akrim
Ekundayo Owolabi
James Agyei-Ohemeng
Junaid Jazib
simon antuong
Getahun Bore
Teklu Gebretsadik
Fajana Olusegun
peace njoku
Sanaullah Noonari
Samuel Arokoyu
Mongtoeun Yim
Journal of Environment and Earth Science
Joshua Eniojukan
Hina Veerwal
Abiy Gebremichael
RELATED TOPICS
- We're Hiring!
- Help Center
- Find new research papers in:
- Health Sciences
- Earth Sciences
- Cognitive Science
- Mathematics
- Computer Science
- Academia ©2023

IMAGES
VIDEO
COMMENTS
Deforestation provides more land for agriculture, housing and the raising of animals, and it provides pulp for paper. Palm oil and latex are derived from forest trees and may also be harvested through deforestation.
To make an acknowledgement in a research paper, a writer should express thanks by using the full or professional names of the people being thanked and should specify exactly how the people being acknowledged helped.
The sample methodology in a research paper provides the information to show that the research is valid. It must tell what was done to answer the research question and how the research was done.
5Agricultural Research Council, Islamabad, 44000, Pakistan ... study deals with the dynamics of deforestation in.
The article (Ali, 2014) focuses on the study of the role of deforestation, its impact on climate change and its consequences in Pakistan. Forests protect
The most adverse impacts of deforestation in Pakistan are flooding
According to different estimates, the annual rate of deforestation in the country varied between 0.7 and 2% (FAO, 2011; FAO, 2015; Qamer et al.
There is a question that this agricultural land is best or not. This paper is based on both theoretical as well as empirical part. For the empirical analysis
This paper investigates the impact of population, technology (tractor, tube well), and agricultural land square km on deforestation using
This paper focuses on studying the role of deforestation, its influence on climate change phenomena and its consequences in Pakistan.
Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.8, No.17, 2018 Micro-level Study of Deforestation in
the Deforestation Process in District Kurram, Pakistan, since 1972.
The Underlying Causes of Deforestation and Forest Degradation in Pakistan. Asif Saeed. Abstract. This paper is based on the findings of a workshop held in
Economic development and forest cover: evidence from satellite data. Scientific reports, 7, 40678. Doupe, P. (2014). Reduced deforestation and economic growth (